

NTS Labs, LLC MIL-STD-461G Test Report for the Ethernet Switch Box

Prepared For Amphenol Aerospace | 40-60 Delaware Ave | Sidney, NY 13838

Prepared By

NTS Labs, LLC | 36 Gilbert Street South | Tinton Falls, NJ 07701 | 732-936-0800 | www.nts.com

Brett Leslie Senior Technical Writer

Jeff Maselli EMI Project Engineer

-Male Lette

Mark Betts Quality Management Representative

Distribution Statement D: Distribution authorized to the Department of Defense and U.S. DoD contractors only; Critical Technology: January 5, 2011. Other requests shall be referred to NAVSEA.

<u>WARNING</u>: This document contains technical data whose export is restricted by Arms Export Control Act (Title 22, U.S.C., Sec. 2751, et seq.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401, et seq.). Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with the provisions of DoD Directive 5230.25.

Destruction Notice. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

No public releases or public displays of any kind are authorized without the expressed written consent of COMNAVSEASYSCOM (SEA OOD) or higher authority.

This report and the information contained herein represent the results of testing of only those articles/products identified in this document and selected by the client. The tests were performed to specifications and/or procedures approved by the client. NTS Labs, LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS Labs, LLC of the equipment tested, nor does it present any statement whatsoever as to the merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from NTS Labs, LLC.

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751, et q.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401 et seq. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25.

Subject to the EAR. This information is subject to the export control laws of the United States, specifically including the Export Administration Regulations (EAR), 15 C.F.R. Part 730 et seq. Transfer, retransfer, or disclosure of this data by any means to a non U.S. person (individual or company), whether in the United States or abroad, without any required export license or other approval from the U.S. Government is prohibited.

Revision History

Rev.	Description	Issue Date
0	Initial Release	10/25/2022

Table of Contents

	Introduction	1	5
	1.1 Purpos	2	5
	1.2 Acrony	ms	5
	1.3 Definit	ions	6
2.0	References.		7
		Under Test	
		tion	
	-	ystem Setup	
		peration and Monitoring	
		il Criteria	
		ppression Devices	
		onding / Grounding Requirements	
		abling	
	3.8 Non-D	evelopmental Items (NDI) and Government Furnished Equipment (GFE)	9
		y Classification	
		ements	
		cility Location	
		sources	
	4.2.1	Test Equipment	
	4.2.2	Test Automation and Data Collection Software	
		I Test Requirements	
	4.3.1	Test Facility	
	4.3.2	Ground Plane	
	4.3.3	Power Source Impedance	
		ons Testing	
	4.5 Suscep	tibility Testing	11
		ls, Procedures and Test Results	
	5.1 CE102	Conducted Emissions: Conducted Emissions, Radio Frequency Potential, Power Leads	13
	5.1.1	CE102 Purpose	
	5.1.1 5.1.2	CE102 Purpose CE102 Limit	13
			13 13
	5.1.2	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check	
	5.1.2 5.1.3	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure	13 13 13 13 14
	5.1.2 5.1.3 5.1.4	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations	13 13 13 13 14 15
	5.1.2 5.1.3 5.1.4 5.1.5	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure	13 13 13 13 14 15
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations	13 13 13 13 14 15 16
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD)	13 13 13 14 14 16 17
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet	13 13 13 14 15 16 17 21
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data	13 13 13 14 15 16 17 21 23 35
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Test Equipment List	13 13 13 14 15 16 16 21 23 23 23 48
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data	13 13 13 14 15 16 16 21 23 23 23 48
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Test Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose	13 13 13 13 14 15 16 17 16 17 21 35 48 49 49
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Test Datasheets and Log Sheet CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose RE102 Measurement System Check	13 13 13 13 14 15 16 17 21 23 35 48 49 49 49 49
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Test Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose RE102 Measurement System Check RE102 EUT Test Setup	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Test Datasheets and Log Sheet CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose RE102 Measurement System Check RE102 EUT Test Setup RE102 Antenna Positioning	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Waveforms CE102 Waveforms CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose RE102 Measurement System Check RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Procedure	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose RE102 Measurement System Check RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Procedure RE102 Test Procedure RE102 Test Results, Conclusions and Recommendations	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Waveforms CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field RE102 Purpose RE102 Purpose RE102 EUT Test Setup RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Procedure RE102 Test Procedure RE102 Test Results, Conclusions and Recommendations RE102 Test Datasheets and Log Sheet	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Data CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field. RE102 Purpose RE102 Purpose RE102 EUT Test Setup RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Procedure RE102 Test Results, Conclusions and Recommendations RE102 Test Datasheets and Log Sheet RE102 Test Datasheets and Log Sheet RE102 Test Datasheets and Log Sheet RE102 Photographs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure. CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet. CE102 Photographs CE102 Waveforms CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field. RE102 Purpose RE102 Purpose RE102 EUT Test Setup RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Results, Conclusions and Recommendations RE102 Test Results, Conclusions and Recommendations RE102 Test Datasheets and Log Sheet RE102 Photographs RE102 Data	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet CE102 Photographs CE102 Photographs CE102 Data CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field. RE102 Purpose RE102 Purpose RE102 EUT Test Setup RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Procedure RE102 Test Results, Conclusions and Recommendations RE102 Test Datasheets and Log Sheet RE102 Test Datasheets and Log Sheet RE102 Test Datasheets and Log Sheet RE102 Photographs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10 5.1.11 5.1.12 5.2 RE102 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10	CE102 Limit CE102 EUT Test Setup CE102 Measurement System Check CE102 Test Procedure. CE102 Test Results, Conclusions and Recommendations CE102 Notice of Deviation (NOD) CE102 Test Datasheets and Log Sheet. CE102 Photographs CE102 Waveforms CE102 Data CE102 Data CE102 Test Equipment List Radiated Emissions: Radiated Emissions, Electric Field. RE102 Purpose RE102 Purpose RE102 EUT Test Setup RE102 EUT Test Setup RE102 Antenna Positioning RE102 Test Results, Conclusions and Recommendations RE102 Test Results, Conclusions and Recommendations RE102 Test Datasheets and Log Sheet RE102 Photographs RE102 Data	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Appendix B: LISN Impedance	101
Appendix C: Correction Factors	

List of Figures

Figure 3.2-1: Ethernet Switch Box Setup Overview	8
Figure 4.3-2: LISN Impedance Example	
Figure 5.1-1: CE102 Limit (EUT Power Leads, AC and DC) for all Applications	
Figure 5.1-2: CE102 Measurement System Check Setup	14
Figure 5.1-3: CE102 Measurement Setup	
Figure 5.2-1: RE102 Limit for Aircraft and Space System Applications	
Figure 5.2-2: RE102 Measurement System Check Setup	50
Figure 5.2-3: Antenna Positioning	
Figure 5.2-4: Multiple Antenna Positions	

List of Tables

Table 2.0-1: Government Specifications, Standards, and Handbooks	7
Table 2.0-2: Other Documents, Drawings, and Publications	7
Table 3.1-1: EUT Information	8
Table 3.1-2: EUT Power Input Information	8
Table 4.4-1: Bandwidth and Measurement Times	11
Table 4.5-1: Susceptibility Scanning	
Table 5.0-1: Test Methods and Test Results Summary	12
Table 5.1-1: CE102, Conducted Emissions Test Equipment List	48
Table 5.2-1: Antenna Type and Applicable Frequencies	53
Table 5.2-2: RE102, Radiated Emissions Test Equipment List	97
Table A-1: Test Automation and Data Collection Software Revision	

1.0 Introduction

1.1 Purpose

The purpose of this report is to document the procedural steps for testing and criteria for evaluating the results of the MIL-STD-461G Electromagnetic Interference (EMI) testing of the Ethernet Switch Box. The test program was conducted to determine the ability of the Ethernet Switch Box to successfully satisfy the requirements specified in Section 4.

This EMI Test Report (EMITR) is contracted by Amphenol Aerospace. It is the end user who is ultimately responsible for the compliance of the equipment installed. The contracted test facility is NTS Labs, LLC in Tinton Falls, New Jersey.

1.2 Acronyms

BIT	Built-In-Test	EUT	Equipment Under Test
CE	Conducted Emissions	FCC	Federal Communications Commis- sion
CI	Commercial Item	FFT	Fast Fourier Transform
CS	Conducted Susceptibility	FWHM	Full Width Half Maximum
DID	Data Item Description	GFE	Government Furnished Equipment
DoD	Department of Defense	ISO	International Organization for Standardization
DSPO	Defense Standardization Program Office	LISN	Line Impedance Stabilization Net- work
E3	Electromagnetic Environmental Effects	MAD	Magnetic Anomaly Detectors
EMC	Electromagnetic Compatibility	NDI	Non-Developmental Item
EME	Electromagnetic Environment	RE	Radiated Emissions
EMI	Electromagnetic Interference	RF	Radio Frequency
EMICP	Electromagnetic Interference Control Proce- dures	RMS	Root Mean Square
EMITP	Electromagnetic Interference Test Proce- dures	RS	Radiated Susceptibility
EMITR	Electromagnetic Interference Test Report	TEM	Transverse Electromagnetic
ERP	Effective Radiated Power	TPD	Transient Protection Device
ESD	Electrostatic Discharge		

1.3 Definitions

Above Deck is an area on ships which is not considered to be "below deck" as defined herein.

Below Deck is an area on ships which is surrounded by a metallic structure, or an area which provides significant attenuation to electromagnetic radiation, such as the metal hull or superstructure of a surface ship, the pressure hull of a submarine and the screened rooms in non-metallic ships.

Decibel (dB) is a logarithmic unit of measurement that expresses the magnitude of a physical quantity (usually power or intensity) relative to a specified or implied reference level.

Metric Units are a system of measures defined by the International System on Units based on the "Le System International d' Unites (SI)", of the International Bureau of Weights and Measures. These units are described in ASTM E3380.

Non-Developmental Item is a broad, generic term that covers material available from a wide variety of sources both industry and Government with little or no development effort required by the procuring activity.

Octave refers to the interval between one frequency and another with double its frequency.

Semi-Anechoic Chamber refers to a chamber with RF absorber lining on all walls and ceiling, but not the floor.

Safety Critical is a category of subsystems and equipment whose degraded performance could result in loss of life or loss of vehicle platform.

Test Setup Boundary includes all enclosures of the EUT and interconnecting and power leads required by MIL-STD-461G.

2.0 References

The following listed in Tables 2.0-1 and 2.0-2 form a part of this document to the extent specified herein.

No	Specification	Title
1	MIL-STD-461G	Department of Defense Interface Standard, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, dated December 11, 2015
2	DI-EMCS-80200C	Data Item Description Electromagnetic Interference Test Report (EMITR), dated November 30, 2007

Table 2.0-1: Government Specifications, Standards, and Handbooks

Table 2.0-2: Other Documents, Drawings, and Publications

No	Document	Title
3	ISO/IEC 17025:2017(E)	<i>General Requirements for the Competence of Testing and Calibration Laborato-</i> <i>ries</i> , dated 11/01/2017
4	NTS QPM	NTS Labs, LLC Quality Policy Manual, Rev 10 dated 8/1/2019
5	ANSI NCSL Z540-1	Calibration Laboratories and Measuring and Test Equipment—General Re- quirements
6	441971	Amphenol Aerospace Purchase Order, dated 08/08/2022
7	Signed COS	Amphenol Aerospace Purchase Order, dated 08/26/2022
8	OP0622062-0	NTS Labs, LLC Quotation, dated 07/22/2022
9	062-QTP Final Draft	Qualification Test Plan and Procedure for Ethernet Switch, Document Number: L-40978-192, Revision A, dated 08/01/2022

3.0 Equipment Under Test

3.1 Description

The Equipment Under Test (EUT) for this test program is the Ethernet Switch Box.

Table 3.1-1: EUT Information

Item	Qty.	Name/Description	Part Number	Serial Number
1	1	Ethernet Switch Box	CF-020400-06	N/A

Table 3.1-2: EUT Power Input Information

Voltage:	28 VDC
Frequency:	DC
Current:	6 Amps max
Power Factor:	1

The Ethernet Switch Box is assembled using a specially configured ruggedized 1/10 GbE network switch. The intended installation is the U-2 airborne system.

3.2 EUT System Setup

Figure 3.2-1: Ethernet Switch Box Setup Overview

3.3 EUT Operation and Monitoring

The Ethernet Switch Box was operated and monitored by Amphenol Aerospace personnel.

3.4 Pass/Fail Criteria

The Pass/Fail criteria for the Ethernet Switch Box was defined by the EMITP, specified in Table 2.0-2.

3.5 EMI Suppression Devices

At the time of testing, no EMI suppression devices were added to the EUT in order to achieve compliance.

3.6 EUT Bonding / Grounding Requirements

The bonding / grounding requirements for the Ethernet Switch Box was defined by the EMITP, specified in Table 2.0-2.

3.7 EUT Cabling

The EUT cabling requirements for the Ethernet Switch Box was defined by the EMITP, specified in Table 2.0-2.

3.8 Non-Developmental Items (NDI) and Government Furnished Equipment (GFE)

The Ethernet Switch Box does not contain any Non-Developmental Items (NDI) and Government Furnished Equipment (GFE).

3.9 Security Classification

The Ethernet Switch Box is considered an unclassified defense article. While unclassified, it should be handled only by authorized personnel. This equipment contains technical data within the definition of the International Traffic in Arms Regulations, and is subject to the export control laws of the USG. Retransfer of this data by any means to any Foreign Person, whether in the United States or abroad, without the written approval of the U. S. Department of State, is prohibited. See CFR 22 Parts 120-130.

4.0 Test Requirements

This section provides an overview of the EMI test requirements and general information.

4.1 Test Facility Location

All testing was performed at NTS Labs, LLC, located in Tinton Falls, NJ, USA.

4.2 Test Resources

4.2.1 Test Equipment

Lists of the NTS Labs, LLC-provided equipment used during testing are included in each test section. This equipment is calibrated according to ISO/IEC 17025, and calibration is traceable to the National Institute of Standards and Technology (NIST). Calibration records are maintained on file at NTS Labs, LLC.

Measurement Tolerances

Unless otherwise stated for a particular measurement, the tolerance shall be as follows:

- Distance: ±5%
- Frequency: ±2%
- Amplitude, measurement receiver: ±2 dB
- Amplitude, measurement system (includes measurement receivers, transducers, cables, and so forth): $\pm 3~\text{dB}$
- Time (waveforms): ±5%
- Resistors: ±5%
- Capacitors: ±20%

4.2.2 Test Automation and Data Collection Software

Various software packages are used for test automation and data collection, depending on the test type. Refer to Appendix A for detailed information on the software used for each test.

4.3 General Test Requirements

4.3.1 Test Facility

The NTS Labs, LLC laboratory, located in Tinton Falls, NJ, is accredited to ISO/IEC 17025.

All testing occurred within a shielded semi anechoic enclosure or shielded room, located in Tinton Falls, NJ. Semi anechoic chambers are lined with anechoic Radio Frequency (RF) absorbing tiles and cones on the walls and the ceiling. Peripheral equipment is located outside the shielded enclosure. All power leads entering the shielded enclosures will be routed via electromagnetic interference filters to provide at least 80 dB of attenuation above 10 kHz when measured in accordance with MIL-STD-220B. Interconnecting cables are routed via feed-through ports when practical. Shielding effectiveness to electric fields and plane waves of this EMI test chamber exceed 80 dB from 14 kHz-10 GHz, and 60 dB from 10 GHz-40 GHz.

4.3.2 Ground Plane

The table-top ground plane was copper, measuring at least 2.5 square meters in area with the smaller side no less than 76 cm. The ground plane is electrically bonded to the floor of the shielded enclosure at least once every 1 meter. The metallic bond straps are solid and maintain a five-to-one ratio or less in length to width. The DC resistance between the ground plane and the shielded enclosure is less than 2.5 m Ω .

4.3.3 Power Source Impedance

The impedance of power sources providing input power to the EUT are controlled by LISNs for all measurement procedures of this document unless otherwise stated in a particular test procedure. LISNs are not be used on output power leads. The LISNs are located at the power source end of the exposed length of power leads. The LISN impedance characteristics are in accordance with Figure 4.3-2. The LISN impedance are measured periodically under the following conditions:

- The impedance shall be measured between the power output lead on the load side of the LISN and the metal enclosure of the LISN.
- The LISN signal output port has a 50 Ω termination.
- The power input terminal on the power source side of the LISN shall be un-terminated.

Figure 4.3-2: LISN Impedance Example

Refer to Appendix B for LISN Impedance plots for the specific LISNs used for tests in this report.

4.4 Emissions Testing

Receiver Bandwidth and Measurement Time

The measurement receiver bandwidths listed in Table 4.4-1, which are derived from MIL-STD-461G, are used for emissions testing. These bandwidths are specified at the 6 dB down points for the overall selectivity

Unclassified Defense Technical Data *** Refer to restrictions on first page ***

curve of the receivers. Video filtering is not used to bandwidth limit the receiver response. A controlled video bandwidth is available on the measurement receivers used; it was set to its greatest value. This value was 50MHz.

Frequency Range	6 dB Band- width	Dwell Time ¹	Min Measurement Time of Analog Measurement Receiver
30 Hz-1 kHz	10 Hz	0.15 sec	0.015 sec/Hz
1 kHz-10 kHz	100 Hz	0.015 sec	0.15 sec/kHz
10 kHz-150 kHz	1 kHz	0.015 sec	0.015 sec/kHz
150 kHz-30 MHz	10 kHz	0.015 sec	1.5 sec/MHz
30 MHz-1 GHz	100 kHz	0.015 sec	0.15 sec/MHz
>1GHz	1 MHz	0.015 sec	15 sec/GHz

Table 4.4-1: Bandwidth	and Measurement Times
------------------------	-----------------------

Ambient Electromagnetic Level

During testing, the ambient electromagnetic level is measured with EUT de-energized and all auxiliary equipment turned on and shall be at least 6 dB below the allowable specified limits. Ambient conducted levels on power leads are measured with the leads disconnected from the EUT and connected to a resistive load which draws the same current as the EUT. The ambient are recorded in the EMITR.

4.5 Susceptibility Testing

For susceptibility measurements, the entire frequency range for each applicable test are scanned. For swept frequency susceptibility testing, frequency scan rates and frequency step sizes of signal sources did not exceed the values listed in Table 4.5-1. The rates and step sizes are specified in terms of a multiplier of the tuned frequency (f_o) of the signal source. Analog scans refer to signal sources which are continuously tuned. Stepped scans refer to signal sources which are sequentially tuned to discrete frequencies. Stepped scans dwell at each tuned frequency for 3 seconds. Scan rates and step sizes are decreased when necessary to permit observation of a response.

Frequency Range	Analog Scans Max Scan Rates	Stepped Scans Max Step Size
30 Hz - 1 MHz	0.0333f _o /sec	0.05 f _o
1 MHz - 30 MHz	0.00667 f _o /sec	0.01 f _o
30 MHz - 1 GHz	0.00333 fo/sec	0.005 f _o
1 GHz - 40 GHz	0.00167 f _o /sec	0.0025 f _o

Table 4.5-1: Susceptibility Scanning

Susceptibility Criteria

The susceptibility criteria are defined by Section 3.4.

Modulation of Susceptibility RF Signals

Susceptibility test signals for RS103 and CS114 are pulse modulated (on/off ratio of 40 dB minimum) at 1 kHz rate with a 50% duty cycle.

Thresholds of Susceptibility

When susceptibility indications are noticed in EUT operation, a threshold level shall be determined when possible, and where the susceptible condition shall be no longer present. Thresholds of susceptibility are determined as follows:

- When a susceptibility condition is detected, the interference signal shall be reduced until the EUT recovered.
- The interference shall be reduced by an additional 6 dB.
- The interference signal shall be gradually increased until the susceptibility condition reoccurred.
- The level, frequency range of occurrence, frequency and level of greatest susceptibility, and other test parameters, as applicable will be recorded.

5.0 Test Methods, Procedures and Test Results

Table 5.0-1: Test Methods and Test Results Summary
--

Section	Test	Specification Test Facility Test Date Part		Part #	Serial #	Test Result	
5.1	CE102, Conducted Emissions	MIL-STD-461G and 062-QTP_final draft	Tinton Falls	10/19/2022 - 10/21/2022	CF-020400-06	N/A	Did not comply
5.2	RE102, Radiated Emissions	MIL-STD-461G and 062-QTP_final draft	Tinton Falls	10/19/2022 - 10/21/2022	CF-020400-06	N/A	Passed

The decision rule for Test Results was based on the Test Specification used for testing.

5.1 CE102, Conducted Emissions: Conducted Emissions, Radio Frequency Potential, Power Leads

5.1.1 CE102 Purpose

This test verifies that electromagnetic emissions from the EUT do not exceed the limit specified in Figure 5.1-1 for input leads, including returns, in the frequency range of 10 kHz-30 MHz.

5.1.2 CE102 Limit

This requirement is applicable for power leads, including returns that obtain power from other sources not part of the EUT.

The upper frequency limit shall be extended to 30 MHz.

The test setup shown in MIL-STD-461G, figure CE102-3 shall be used, except that where practical the length of the cable between the LISN and the EUT power input shall be shortened to 0.5 meter for measurements between 10 MHz and 30 MHz in lieu of the 2-meter length specified in paragraph 4.3.8.6.2 of MIL-STD-461G.

Figure 5.1-1: CE102 Limit (EUT Power Leads, AC and DC) for all Applications

5.1.3 CE102 EUT Test Setup

The EUT was set up in accordance with Section 3.2, Figure 3.2-1, and operated according to Section 3.3.

5.1.4 CE102 Measurement System Check

With the EUT power off, the test setup was configured for the system check in accordance with Figure 5.1-2.

- 1. The measurement system check was performed prior to testing the EUT.
- 2. The measurement equipment was turned on, and sufficient time was allowed for stabilization.

<u>Unclassified Defense Technical Data</u> *** Refer to restrictions on first page ***

- 3. A signal level of 90 dB μ V at 10.5 kHz and 100 kHz was applied to the power output terminal of the LISN. At 10.5 kHz and 100 kHz, an oscilloscope was used, in high impedance mode, to verify that there was a proper signal level at the LISN and verify that it was sinusoidal. After establishing the proper signal at the LISN, the LISN was disconnected and the resulting voltage was measured using an oscilloscope with 50 ohm input impedance. The ratio of the LISN voltage to the 50 ohm voltage measurement must be within the following tolerances: at 10.5 kHz = -14 dB (+1 dB/-2 dB) and at 100 kHz = -3 dB (+1 dB/-2 dB).
- 4. A signal level was applied that is at least 6 dB below the limit at 10.5 kHz, 100 kHz, 1.95 MHz and 9.8 MHz to the power output terminal of the LISN. At 10.5 kHz and 100 kHz, an oscilloscope was used to calibrate the signal level. At 1.95 MHz, 9.8 MHz, and 29.5 MHz the calibrated output level directly from a 50 Ω signal generator was used.
- 5. The measurement receiver was scanned for each frequency in the same manner as a normal data scan.
- 6. The measurement receiver must indicate a level ± 3 dB of the calibrated injected level.
- 7. Steps 3-6 were repeated for each LISN.
- 8. An ambient measurement was performed across the frequency range with the EUT power leads disconnected and with a resistor rated to draw the same current as the EUT. All auxiliary support equipment was powered during this measurement.
- 9. Corrections factors for the 20 dB attenuator cables and the voltage drop due to the LISN 0.25 microfarad coupling capacitor were added to the raw data collected from the measurement receiver. For example: Attenuator (dB) + Cable (dB) + LISN insertion loss $(dB) + Raw Data (dB\mu V) = corrected data (dB\mu V)$.

Figure 5.1-2: CE102 Measurement System Check Setup

5.1.5 CE102 Test Procedure

The test setup was configured in accordance with Figure 5.1-3.

- 1. An appropriate lead was selected for testing.
- 2. The measurement receiver was scanned over the frequency range of 10 kHz 30 MHz, using the bandwidths and minimum measurement times specified in Table 4.4-1.
- 3. Corrections factors for the 20 dB attenuator cables and the voltage drop due to the LISN 0.25 microfarad coupling capacitor were added to the raw data collected from the measurement receiver. For example: *Attenuator* (*dB*) + *Cable* (*dB*) + *LISN insertion loss* (*dB*) + *Raw Data* (*dBµV*) = *corrected data* (*dBµV*).
- 4. Steps 1 through 3 were repeated for each power lead.

<u>Unclassified Defense Technical Data</u> *** Refer to restrictions on first page ***

Figure 5.1-3: CE102 Measurement Setup

5.1.6 CE102 Test Results, Conclusions and Recommendations

The EUT did not comply. A test deviation occurred. For details, refer to the Notice of Deviation (NOD) section.

At the time of testing, no remedial actions were taken in order to achieve compliance with the requirements. No corrective measures have been recommended.

NTS

NOTICE OF DEVIATION

Client:	Amphenol A	Aerospace	Job	#: PR163842	NOD #:	1
P. O. #:	N/A		Date of Deviation	10/21/2022	CAR #:	N/A
Notification Made (Client Contact)	To: Ja	red Sibrava	٢	lotification Made By:	Tristian Gaines	
If notification was provide justification		N/A				
Date:		10/21/202	22 V	/ia:	Email	
Test:		CE102	T	est Item:	Ethernet SwitchBox	
Specification:		062-QTP-Fi	nal Draft N	Nodel or P/N:	CF-020400-06	
Revision/Date:		0	s	erial Number:	N/A	

<u>REQUIREMENTS:</u> (Reference paragraph or section of specification)

5.5.2 CE102 limits. Conducted emissions on power leads shall not exceed the applicable values shown on Figure CE102-1.

DESCRIPTION OF DEVIATION

The EUT exceeded the limit.

DISPOSITIONS/COMMENTS/RECOMMENDATIONS:

I/A			
lotified via email, 10/21/22)		-Make State	10/21/22
Client Test Witness (if applicable)	Date	NTS Quality Representative	10/21/22 Date
Make Sett	10/21/22		
NTS Project Manager	Date	Government QAR (if applicable)	Date

FOR NTS QA USE: Tracking Code: 5 Risk Level: Lo Low

Low Medium High

COR 16.0, REV. 6

	NTS Labs LLC										
MIL-STD-461 CE102 Bandwidth, Measurement Time and Frequency Resolution											
Project :		PR163842					Customer:	Amphenol Aero	ospace		
EUT:		Ethernet Sw	vitch Box				Model:	CF-020400-06			
Procedur	e:	062-QTP_fi	nal draft				Date:	10/19/2022	-10		
Start Freq. (MHz)	Stop Freq. (MHz)	MIL-STD- 461G Table II Min. Meas. Time (sec/MHz)	Resolutio	Min. Meas. time for this band (sec)	Number of Sweep Points	Min. Number of ranges needed	Minimum Measurement Time per Range (sec)	Sampling Resolution (MHz)	Scan Settings Meet or Exceed 1%f Requirement?	Scan Settings Meet or Exceed 2xRBW Requirement?	Acceptable Scan Settings?
0.01	0.15	15	0.001	2.1	1001	1	2.1	0.00013986	No	Yes	Yes
0.15	1	1.5	0.01	1.275	1001	1	1.275	0.00084915	Yes	Yes	Yes
1	5	1.5	0.01	6	1001	1	6	0.00399600	Yes	Yes	Yes
5	15	1.5	0.01	15	1001	1	15	0.00999001	Yes	Yes	Yes
15	25	1.5	0.01	15	1001	1	15	0.00999001	Yes	Yes	Yes
25	30	1.5	0.01	7.5	1001	1	7.5	0.00499500	Yes	Yes	Yes

NTS Labs LLC									
MIL-STD-461 CE102 System Verification									
Project :	PR163842	PR163842 Customer: Amphenol Aerospace							
EUT:	Ethernet Switch Box		Model:	CF-020400-06					
Procedure:	062-QTP_final draft		Date:	10/19/2022					
	ectly from a 50 ohm signal genera	2000 ID400 2000	applications,	28V					
(MHz) Limit Oscilloscope Target Voltage Voltage on the Spectrum (dBm)									
	Limit	Oscilloscope Target Voltage	Voltage or	the Spectrum	•				
(MHz)	Limit (dBuV)	Oscilloscope Target Voltage (mVrms)	Voltage or Analyzer	the Spectrum (dBuV)	(dBm)				
(MHz)	Limit (dBuV) 93.6	Oscilloscope Target Voltage (mVrms) 21.321	Voltage or Analyzer	the Spectrum (dBuV)	Manually Adjust				
(MHz) 0.0105 0.1	Limit (dBuV) 93.6 74.0	Oscilloscope Target Voltage (mVrms) 21.321 2.239	Voltage or Analyzer	the Spectrum (dBuV)	(dBm) Manually Adjust Manually Adjust				
(MHz)	Limit (dBuV) 93.6	Oscilloscope Target Voltage (mVrms) 21.321	Voltage or Analyzer	the Spectrum (dBuV)	(dBm) Manually Adjust				

CE102 Verification Results									
Frequency (MHz)	LISN Line Tested	Expected Result (dBuV)	Actual Result (dBuV)	Deviation (dB)	Result				
0.0105	Line 1	86.58	85.6	-0.98	PASS				
0.1	Line 1	67.00	67.8	0.80	PASS				
1.95	Line 1	53.00	52.7	-0.30	PASS				
9.8	Line 1	53.00	52.6	-0.40	PASS				
29.5	Line 1	53.00	52.9	-0.10	PASS				
0.0105	Line 2	86.58	85.2	-1.38	PASS				
0.1	Line 2	67.00	66.9	-0.10	PASS				
1.95	Line 2	53.00	52.6	-0.40	PASS				
9.8	Line 2	53.00	53.2	0.20	PASS				
29.5	Line 2	53.00	53.5	0.50	PASS				
est Performed By:	Tristian Gaines		Test Date:	10/19/	2022				

NTS Labs LLC									
			MIL-STD-461 CE	102 System Verif	ication				
Project :	PR163842			Customer:	Amphenol Aerospace	9			
EUT:	Ethernet Switch	Box		Model:	CF-020400-06				
Procedure:	062-QTP_final d	raft		Date:	10/19/2022				
isconnect LISN	and measure resulti st be within the follo	ng voltage u	per signal level at the L sing an oscilloscope wi nces: at 10.5 kHz = -14 d 90dBuV (31.62mV), 1MΩ Oscilloscope Voltage at LISN	th 50 ohm input impeda B (+1 dB/-2 dB) and at 50Ω Oscilloscope Voltage - Direct Measurement	ance. The ratio of the L	ISN voltage to the 50			
	0.	(mVrms)		(mVrms) 169	14.56	Yes	PASS		
Line1					0.05				
		0.1	31.6 41.4		2.35	Yes	PASS		
LISN	Freque	ncy (MHz)	90dBuV (31.62mV), 1MΩ Oscilloscope Voltage at LISN (mVrms)	50Ω Oscilloscope Voltage - Direct Measurement (mVrms)	LISN voltage ratio	Is waveform sinusoidal?	Result		
Line 2	0.	0105	31.6	169	14.56	Yes	PASS		
Line 2		0.1	31.6	40	2.05	Yes	PASS		
0.1 31.0 40 2.03 Yes PA Test Performed By: Tristian Gaines Test Date: 10/19/2022									

	NTS Labs LLC								
MIL-STD-461 CE102 Data Sheet									
Project :	PR163842			Customer:	Amphenol Aerospace				
EUT:	Ethernet Switch	Box		Model:	CF-020400-06				
Procedure:	062-QTP_final	draft		Date:	10/19/2022				
Input Voltage:	28VD0	2	Frequency:	DC					
Pre-Test Physi	ical Inspection: PASS Observation: None								
Pre-Test Opera	tional Inspection	on:	PASS	Observation:	None				
EUT Power	Line Tested		Limit Level	EUT	Mode of Operation	Test Result			
+28	VDC	Limit	t for all applications, 28V		Normal	FAIL			
Ret	urn	Limit	t for all applications, 28V	-	Normal	PASS			
Post-Test Phys	ical Inspection	:	PASS	Observation:	None				
Post-Test Oper	rational Inspect	ion:	PASS	Observation:	None				
Test Performed	d By:	Tristian	Gaines		Test Date:	10/19/2022			

		NTS Lab	s LLC					
		MIL-STD-461 CE	102 Log Sheet					
Project :	PR163842		Customer:	Amphenol Aerospace				
EUT:	Ethernet Switch Box Model: CF-020400-06							
Procedure:	062-QTP_fin	_final draft Date: 10/19/2022						
Date	Time		Log Entries		Initials			
10/19/22	0745	Lockheed witness arrived.			TG			
	0934	System checks complete.			Ļ			
	1000	Amphenol will be coming 10/20/2022 with an e checks in the meantime.	ethernet sheath and 2 ι	inshielded power cables. Doing RE system	Ļ			
10/21/22	1055	Began Ambient Checks.			TG			
	1315	CE102 outage on +28VDC at 1.2MHz.						
Test Per	formed By:	Tristian Gaines						

CE102 LISN Vdrop Check

CE102 Signal Path Check

CE102 Ambient Check

CE102 Test, Line 1, 10kHz-10MHz

CE102 Test, Line 2, 10kHz-10MHz

CE102 Troubleshooting, CM Ferrite x2 Turns

Test Report TR-PR163842-1 EMI, Revision 0 Page **22** of **104**

CE102 Test, Line 1, 10MHz-30MHz

CE102 Test, Line 2, 10MHz-30MHz

CE102 V Drop, 10.5kHz, 1M Ohm, Line 1

CE102 V Drop, 10.5kHz, 50 Ohm, Line 1

CE102 V Drop, 10.5kHz, 1M Ohm, Line 2

CE102 V Drop, 10.5kHz, 50 Ohm, Line 2

CE102 V Drop, 100kHz, 1M Ohm, Line 2

CE102 V Drop, 100kHz, 50 Ohm, Line 2

CE102 V Drop, 100kHz, 1M Ohm, Line 1

CE102 V Drop, 100kHz, 50 Ohm, Line 1

CE102 System Check, 10.5kHz, Line 1

CE102 System Check, 10.5kHz, Line 2

CE102 System Check, 100kHz, Line 2

CE102 System Check, 100kHz, Line 1

 kHz
 dBuV
 dBuV
 dB
 dBuV
 dB
 dB
 dB
 dB

 10.5600
 85.6
 93.5
 -8.0
 61.47
 4.21
 0.03
 19.84
 -24.08

CE102 System Check: Calibrated Injected Signal = 86.5 dBuV @ 10.5 kHz

110.0- Lev	el - dBu	V								
100.0-									-	Wed, Oct 19, 2022
90.0-									-	8:45:55 AM
80.0-									-	AutoScan 2022.9.19
70.0-									-	Res BW (kHz) 1
60.0-										Vid BW (kHz) 50000
4										Line 2
50.0- 40.0-			it hit cal			(ALLAN), A		b ^{ari} yisiyyitiri.birinis	14,	WC005292 and WC005289
30.0-					יז ייזן א	Lode.			-	20dB Pad WC005821
20.0-									_	Graph # 3
10.0				Freque	ncy - k	Hz				Sweep Time 10.0000
10.000		40.000	60.0	00 8	0.000	100.0	00 120.0	000 15	0.000	
Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors		
kHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB		
10.5600	<mark>85.2</mark>	93.5	-8.3	60.25	5.11	0.03	19.84	-24.98		

CE102 System Check: Calibrated Injected Signal = 67 dBuV @ 100 kHz

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
kHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
100.02	<mark>67.8</mark>	74.0	-6.2	47.76	0.12	0.03	19.84	-19.99

CE102 System Check: Calibrated Injected Signal = 67 dBuV @ 100 kHz

110.0- Lev	el - dBu	V								
100.0-									- 1	Wed, Oct 19, 2022
90.0-	_								- 1	8:59:59 AM
80.0-	_								- 1	AutoScan 2022.9.19
70.0-										Res BW (kHz) 1
60.0-) (_	Vid BW (kHz) 50000
50.0-									- 1	Line 2
40.0-	****		1. 89 .101	n-44Miletyjjik	hora the	particular 1			Jede	WC005292 and WC005289
30.0-				I 'I			· · · ·	1 1 1	- 1	20dB Pad WC005821
20.0-									_	Graph # 5
10.0				Freque	ncy - k	Hz				Sweep Time 10.0000
10.000 40.000 60.000 80.000 100.000 120.000 150.000										
Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Facto	ors	
kHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB		
100.02	<mark>66.9</mark>	74.0	-7.1	46.61	0.42	0.03	19.84	-20.29		

CE102 System Check: Calibrated Injected Signal = 53 dBuV @ 1.95 MHz

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
1.952	52.6	60.0	-7.4	32.53	0.06	0.15	19.85	-20.06

CE102 System Check: Calibrated Injected Signal = 53 dBuV @ 1.95 MHz

110.0- Lev	el - dBi	JV									
100.0-										- 11	Wed, Oct 19, 2022
90.0-										- 11	9:07:01 AM
80.0-										-	AutoScan 2022.9.19
70.0-										- 11	Res BW (kHz) 10
60.0-											Vid BW (kHz) 50000
		¥									Line 1
50.0- 40.0-	العرامة ال										WC005292 and WC005289
30.0-	e de la constante de la constan La constante de la constante de	- www.	hite and the	, iles de la fat	بر الله من	and the	ray for the first state	hildre	,		20dB Pad WC005821
20.0-										- 11	Graph # 7
10.0-				Freque	ncy - N	ИHz					Sweep Time 10.0000
1.00	1.50	2.00	2	.50	3.00	3.50	4.00	4.5	0 5	i.00	
Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Fa	actors		
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB			
1.952	<mark>52.7</mark>	60.0	-7.3	32.66	0.04	0.15	19.85	-20.0	4		

CE102 System Check: Calibrated Injected Signal = 53 dBuV @ 9.8 MHz

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
9.800	52.6	60.0	-7.4	32.40	0.06	0.31	19.86	-20.23

CE102 System Check: Calibrated Injected Signal = 53 dBuV @ 9.8 MHz

40.0-

30.0

20.0-

10.0-

0.0-

-10.0-

MHz

29.50

29.50

Line 2

WC005292 and

20dB Pad WC005821

Sweep Time 5.0000

WC005289

Graph # 10

Nu d

.

dB

-20.56

CE102 System Check: Calibrated Injected Signal = 53 dBuV @ 29.5 MHz

52.9 60.0 -7.1 32.33 0.12 0.56 19.87 -20.55

Frequency - MHz

28

dB

dB

19.87

27

53.5 60.0 -6.5 32.90 0.12 0.56

dBuV dBuV dB

Frequency Level Limit Delta Raw LISN Cable Xducer All Factors

dBuV dB

100.0- Lev	el - dBu	V								
90.0-									- 11	Wed, Oct 19, 2022
80.0-									- 11	9:59:06 AM
70.0-									-	AutoScan 2022.9.19
60.0-				_					-	Res BW (kHz) 10
50.0-								Ť	- 11	Vid BW (kHz) 50000
40.0-	la l	1 4	I							Line 1
30.0-	***	~~~	₩ ₩ ₩₩	ni traditi		84.14 ¹ 10.411		handraft af the last of the la	····	WC005292 and WC005289
10.0-										20dB Pad WC005821
0.0-										Graph # 11
-10.0				Freque	ncy - N	1Hz				Sweep Time 5.0000
25		26		27		28	2	9	30	
Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors		
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB		

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
0.048	44.2	80.4	-36.3	23.90	0.38	0.03	19.84	-20.25
0.098	41.5	74.2	-32.6	21.54	0.12	0.03	19.84	-20.00
0.143	44.5	70.9	-26.4	24.50	0.08	0.03	19.84	-19.95
0.353	48.6	63.0	-14.4	28.68	0.04	0.04	19.84	-19.92
0.496	47.2	60.1	-12.9	27.28	0.04	0.04	19.84	-19.92
0.792	43.7	60.0	-16.3	23.74	0.04	0.10	19.85	-19.98
1.4960	39.4	60.0	-20.6	19.33	0.04	0.14	19.85	-20.03
2.3440	37.9	60.0	-22.1	17.82	0.04	0.16	19.85	-20.05
4.9760	35.3	60.0	-24.7	15.20	0.04	0.21	19.84	-20.10
5.9000	36.0	60.0	-24.0	15.93	0.04	0.23	19.84	-20.12
11.3800	36.7	60.0	-23.3	16.41	0.06	0.33	19.86	-20.25
14.5300	35.3	60.0	-24.7	15.01	0.06	0.37	19.86	-20.30
18.2900	34.4	60.0	-25.6	14.01	0.08	0.42	19.86	-20.36
19.5000	36.6	60.0	-23.4	16.18	0.08	0.44	19.86	-20.38
21.9100	36.7	60.0	-23.3	16.27	0.09	0.47	19.87	-20.42
26.0050	39.6	60.0	-20.4	19.10	0.11	0.52	19.87	-20.50
27.4300	36.9	60.0	-23.1	16.33	0.11	0.54	19.87	-20.52
29.7600	39.8	60.0	-20.2	19.29	0.12	0.57	19.87	-20.56

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
0.056	42.2	79.0	-36.8	21.43	0.92	0.03	19.84	-20.79
0.101	42.4	73.9	-31.5	22.13	0.41	0.03	19.84	-20.29
0.129	44.5	71.8	-27.2	24.36	0.30	0.03	19.84	-20.18
0.183	53.0	68.7	-15.8	32.90	0.20	0.03	19.84	-20.07
0.499	43.8	60.0	-16.3	23.78	0.09	0.04	19.84	-19.97
0.733	42.3	60.0	-17.7	22.30	0.08	0.08	19.85	-20.01
1.1200	42.7	60.0	-17.3	22.67	0.07	0.14	19.85	-20.06
2.3600	36.6	60.0	-23.4	16.50	0.06	0.16	19.85	-20.07
4.6600	37.6	60.0	-22.4	17.48	0.06	0.21	19.84	-20.11
5.7800	35.7	60.0	-24.3	15.59	0.06	0.23	19.84	-20.13
9.7500	36.0	60.0	-24.0	15.76	0.07	0.31	19.86	-20.24
14.2800	35.4	60.0	-24.6	15.05	0.07	0.37	19.86	-20.30
16.2500	34.4	60.0	-25.6	14.06	0.08	0.40	19.86	-20.34
21.2700	37.5	60.0	-22.5	17.11	0.10	0.46	19.87	-20.42
23.4600	36.9	60.0	-23.1	16.43	0.10	0.49	19.87	-20.46
25.2950	38.0	60.0	-22.0	17.50	0.11	0.51	19.87	-20.49
27.6900	37.6	60.0	-22.4	17.06	0.12	0.54	19.87	-20.53
28.6200	37.6	60.0	-22.4	17.04	0.12	0.55	19.87	-20.54

				_					
Frequency	Level	Limit	Delta		Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB		dBuV	dB	dB	dB	dB
0.044	41.1	81.1	-40.1		20.75	0.44	0.03	19.84	-20.31
0.080	42.5	76.0	-33.5		22.45	0.17	0.03	19.84	-20.04
0.112	42.1	73.0	-31.0		22.09	0.11	0.03	19.84	-19.98
0.118	46.7	72.5	-25.9		26.71	0.10	0.03	19.84	-19.98
0.333	48.4	63.5	-15.2		28.44	0.04	0.04	19.84	-19.92
0.455	58.4	60.8	-2.5		38.43	0.04	0.04	19.84	-19.92
0.640	57.6	60.0	-2.4		37.62	0.04	0.07	19.85	-19.95
0.909	52.7	60.0	-7.3		32.73	0.04	0.12	19.85	-20.01
1.2760	66.6	60.0	<mark>6.6</mark>	F	46.56	0.04	0.14	19.85	-20.03
1.8160	61.3	60.0	<mark>1.3</mark>	F	41.29	0.04	0.15	19.85	-20.04
2.2720	44.6	60.0	-15.4		24.54	0.04	0.16	19.85	-20.05
3.1840	39.5	60.0	-20.5		19.47	0.04	0.18	19.84	-20.06
5.0000	38.8	60.0	-21.2		18.71	0.04	0.22	19.84	-20.10
5.4200	36.7	60.0	-23.3		16.63	0.04	0.22	19.84	-20.11
6.9650	36.7	60.0	-23.3		16.59	0.05	0.25	19.85	-20.15
8.1350	35.1	60.0	-24.9		14.88	0.05	0.28	19.85	-20.18
9.9300	34.9	60.0	-25.1		14.66	0.06	0.31	19.86	-20.23

-								
Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
0.032	45.3	83.8	-38.5	23.65	1.80	0.03	19.84	-21.67
0.076	42.6	76.4	-33.9	22.08	0.61	0.03	19.84	-20.49
0.095	43.7	74.5	-30.7	23.42	0.44	0.03	19.84	-20.31
0.137	44.9	71.2	-26.4	24.72	0.28	0.03	19.84	-20.15
0.200	54.9	68.0	-13.0	34.87	0.18	0.03	19.84	-20.06
0.455	47.6	60.8	-13.2	27.65	0.09	0.04	19.84	-19.97
0.636	47.1	60.0	-12.9	27.11	0.08	0.07	19.85	-19.99
0.911	45.1	60.0	-14.9	25.02	0.07	0.12	19.85	-20.04
1.2760	58.6	60.0	-1.4	38.51	0.07	0.14	19.85	-20.06
1.8240	54.9	60.0	-5.1	34.84	0.06	0.15	19.85	-20.06
2.2720	39.4	60.0	-20.6	19.38	0.06	0.16	19.85	-20.07
3.1920	36.3	60.0	-23.7	16.22	0.06	0.18	19.84	-20.08
4.3560	35.6	60.0	-24.4	15.45	0.06	0.20	19.84	-20.10
5.1050	35.4	60.0	-24.6	15.31	0.06	0.22	19.84	-20.12
6.3600	36.6	60.0	-23.4	16.43	0.06	0.24	19.85	-20.15
8.3300	37.4	60.0	-22.6	17.17	0.06	0.28	19.85	-20.20
9.6500	35.3	60.0	-24.7	15.10	0.07	0.31	19.86	-20.24

CE102: Ethernet Switch Box Added 0475176451 Ferrite, No Turns

Frequency	Level	Limit	Delta		Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB		dBuV	dB	dB	dB	dB
0.040	42.9	82.0	-39.1		22.52	0.51	0.03	19.84	-20.39
0.074	42.2	76.7	-34.4		22.19	0.19	0.03	19.84	-20.06
0.110	42.3	73.2	-30.9		22.34	0.11	0.03	19.84	-19.98
0.132	45.0	71.6	-26.5		25.08	0.09	0.03	19.84	-19.96
0.298	50.3	64.5	-14.2		30.35	0.05	0.04	19.84	-19.93
0.458	56.0	60.8	-4.7		36.12	0.04	0.04	19.84	-19.92
0.634	55.0	60.0	-5.0		35.00	0.04	0.07	19.85	-19.95
0.915	50.4	60.0	-9.6		30.38	0.04	0.12	19.85	-20.01
1.2680	64.8	60.0	<mark>4.8</mark>	F	44.81	0.04	0.14	19.85	-20.03
1.8240	59.0	60.0	-1.0		38.93	0.04	0.15	19.85	-20.04
2.2840	42.1	60.0	-17.9		22.05	0.04	0.16	19.85	-20.05
3.2040	37.2	60.0	-22.8		17.16	0.04	0.18	19.84	-20.06
4.9720	35.5	60.0	-24.5		15.38	0.04	0.21	19.84	-20.09
5.6450	36.1	60.0	-23.9		16.03	0.04	0.23	19.84	-20.11
6.8700	37.1	60.0	-22.9		16.99	0.05	0.25	19.85	-20.15
8.1800	35.4	60.0	-24.6		15.27	0.05	0.28	19.85	-20.18
9.7250	35.5	60.0	-24.5		15.33	0.05	0.31	19.86	-20.22

CE102: Ethernet Switch Box Added 400ohm @ 1MHz Ferrite, 2x Turns

Frequency	Level	Limit	Delta		Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB		dBuV	dB	dB	dB	dB
0.039	42.6	82.2	-39.6		22.17	0.54	0.03	19.84	-20.41
0.079	42.9	76.0	-33.2		22.85	0.17	0.03	19.84	-20.04
0.113	43.9	72.9	-29.1		23.91	0.11	0.03	19.84	-19.98
0.136	44.8	71.3	-26.6		24.81	0.08	0.03	19.84	-19.96
0.197	52.1	68.1	-16.0		32.15	0.06	0.03	19.84	-19.94
0.457	55.8	60.8	-5.0		35.84	0.04	0.04	19.84	-19.92
0.635	53.1	60.0	-6.9		33.12	0.04	0.07	19.85	-19.95
0.915	49.7	60.0	-10.3		29.73	0.04	0.12	19.85	-20.01
1.2680	64.1	60.0	<mark>4.1</mark>	F	44.12	0.04	0.14	19.85	-20.03
1.8280	57.5	60.0	-2.5		37.46	0.04	0.15	19.85	-20.04
2.0080	42.6	60.0	-17.4		22.53	0.04	0.16	19.85	-20.04
3.2040	36.7	60.0	-23.3		16.60	0.04	0.18	19.84	-20.06
4.2920	35.6	60.0	-24.4		15.53	0.04	0.20	19.84	-20.08
5.3700	37.2	60.0	-22.8		17.13	0.04	0.22	19.84	-20.10
6.5100	35.1	60.0	-24.9		14.99	0.04	0.25	19.85	-20.13
8.1100	35.4	60.0	-24.6		15.21	0.05	0.28	19.85	-20.18
9.6600	35.1	60.0	-24.9		14.91	0.05	0.31	19.86	-20.22

CE102: Ethernet SwitchBox

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
11.0	34.2	60.0	-25.8	13.98	0.06	0.33	19.86	-20.25
11.1	39.7	60.0	-20.3	19.43	0.06	0.33	19.86	-20.25
12.5	34.6	60.0	-25.4	14.35	0.06	0.35	19.86	-20.27
13.1	35.4	60.0	-24.6	15.16	0.06	0.35	19.86	-20.28
14.8	34.4	60.0	-25.6	14.12	0.06	0.38	19.86	-20.30
16.0	35.1	60.0	-24.9	14.78	0.07	0.39	19.86	-20.32
17.2	35.9	60.0	-24.1	15.58	0.07	0.41	19.86	-20.34
19.3	36.3	60.0	-23.7	15.93	0.08	0.43	19.86	-20.38
21.1	36.1	60.0	-23.9	15.65	0.09	0.46	19.87	-20.41
23.3	36.0	60.0	-24.0	15.54	0.09	0.48	19.87	-20.44
25.4	38.4	60.0	-21.6	17.88	0.10	0.51	19.87	-20.48
26.2	36.3	60.0	-23.7	15.76	0.11	0.52	19.87	-20.50
27.5	36.5	60.0	-23.5	15.96	0.11	0.54	19.87	-20.52
28.9	37.0	60.0	-23.0	16.42	0.12	0.56	19.87	-20.54
30.0	38.2	60.0	-21.8	17.62	0.12	0.57	19.87	-20.56

CE102: Ethernet SwitchBox

Frequency	Level	Limit	Delta	Raw	LISN	Cable	Xducer	All Factors
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
10.3	33.5	60.0	-26.5	13.25	0.07	0.32	19.86	-20.25
12.0	37.1	60.0	-22.9	16.84	0.07	0.34	19.86	-20.27
12.8	34.1	60.0	-25.9	13.86	0.07	0.35	19.86	-20.28
13.5	34.5	60.0	-25.5	14.24	0.07	0.36	19.86	-20.29
14.7	34.4	60.0	-25.6	14.11	0.07	0.38	19.86	-20.31
16.2	34.5	60.0	-25.5	14.17	0.08	0.39	19.86	-20.34
18.2	34.6	60.0	-25.4	14.22	0.09	0.42	19.86	-20.37
20.9	35.4	60.0	-24.6	14.96	0.10	0.45	19.87	-20.42
21.1	35.4	60.0	-24.6	14.96	0.10	0.46	19.87	-20.42
23.9	36.7	60.0	-23.3	16.20	0.11	0.49	19.87	-20.47
25.1	37.6	60.0	-22.4	17.10	0.11	0.51	19.87	-20.49
26.6	38.4	60.0	-21.6	17.87	0.12	0.53	19.87	-20.51
27.7	36.1	60.0	-23.9	15.53	0.12	0.54	19.87	-20.53
28.9	36.9	60.0	-23.1	16.32	0.12	0.56	19.87	-20.54
29.2	37.8	60.0	-22.2	17.26	0.12	0.56	19.87	-20.55

Asset Number	Asset Type	Manufacturer	Model	Calibrated	Due
WC005510	Chamber (EMI, Semi-Anechoic)	National Technical Systems	AR 1	NCR	NCR
WC005821	Attenuator (Coaxial)	Narda	766A-20	12/10/2021	12/10/2024
WC005289	Network (LISN)	Solar Electronics	8028-50-TS-24- BNC	03/17/2022	03/17/2025
WC005292	Network (LISN)	Solar Electronics	8028-50-TS-24- BNC	01/28/2022	01/28/2025
WC058386	Oscilloscope (Digital)	Tektronix	MDO3034	01/31/2022	01/31/2023
WC058452	Generator (Waveform)	Keysight Technologies	33250A	06/09/2022	06/09/2023
WC058456	Receiver	Keysight Technologies	N9038A	10/29/2021	01/29/2023
WC058500	Cable (Test)	Winchester	E50-E50-2150720	10/04/2022	10/04/2024
WC058501	Cable (Test)	Winchester	E50-E50-2150960	05/09/2022	05/09/2024

Table 5.1-1: CE102, Conducted Emissions Test Equipment List

NCR = No Calibration Required; as per NTS Labs, LLC QA policy, the equipment does not require calibration as long as the test signal being generated can be verified with other calibrated equipment prior to or during the test.

5.2 RE102, Radiated Emissions: Radiated Emissions, Electric Field

5.2.1 RE102 Purpose

This test verifies that electric field emissions from the EUT shall not exceed the Fixed Wing External limit specified in Figure 5.2-1.

Figure 5.2-1: RE102 Limit for Aircraft and Space System Applications

5.2.2 RE102 Measurement System Check

- 1. The measurement system check was performed prior to testing.
- 2. The measurement system was set up per Figure 5.2-2.
- 3. The evaluation was performed on the overall measurement system from each antenna to the data output device at the highest measurement frequency of the antenna. For the active rod antenna, the evaluation was performed at the lowest frequency of test, at a mid-band frequency, and at its highest measurement frequency.
- 4. A signal generator was connected to the coax in place of the measurement antenna. For the active rod antenna, the active rod antenna calibration fixture was used in place of the rod element and the signal was injected across a 10 pF capacitor in the calibration fixture.
- 5. The signal generator was adjusted to produce a signal 6 dB below the RE102 limit (limit minus antenna factor) shown in Figure 5.2-1.
- 6. The signal detected at the measurement receiver was confirmed to be within ± 3 dB of the calibrated level.
- 7. This process was repeated for each frequency defined as follows:
 - Active rod Antenna: 10.5 kHz (only for testing performed between 10 kHz and 2 MHz), 2.1MHz, 12MHz, 29.5 MHz
 - Biconical Antenna: 197 MHz
 - Large Double Ridged Horn Antenna: 990 MHz
 - Small Double Ridged Horn Antenna: 17.5 GHz
- 8. Correction factors were added to the raw data collected from the measurement receiver. For example:

Cable loss (dB) + Antenna factors (dB) + Raw Data (dB μ V) - Preamplifier gain (dB) = corrected data (dB μ V/m).

- 9. Using the measurement path of Figure 5.2-2, the following evaluation for each antenna was performed to demonstrate that there is electrical continuity through the antenna:
 - A. A signal was radiated using an antenna or stub radiator at the highest measurement frequency of each antenna.
 - B. The measurement receiver was tuned to the frequency of the applied signal and the received signal of appropriate amplitude was present. NOTE: This evaluation is intended to provide a coarse indication that the antenna is functioning properly. There is no requirement to accurately measure the signal level.
- 10. An ambient measurement was performed across the frequency range with the EUT power leads disconnected. All auxiliary support equipment was powered during this measurement.

Figure 5.2-2: RE102 Measurement System Check Setup

5.2.3 RE102 EUT Test Setup

The EUT was set up in accordance with Section 3.2, Figure 3.2-1, and operated according to Section 3.3.

5.2.4 RE102 Antenna Positioning

- 1. Measure the EUT and test setup boundary for use in positioning of antennas. Use the physical reference points on the antennas shown in Figure 5.2-3 for measuring heights of the antennas and distances of the antennas from the test setup boundary.
- 2. Position antennas 1 meter from the front edge of the test setup boundary for all setups.
- 3. Position antennas 120 cm above the floor ground plane. For free standing EUTs, antenna heights shall be determined as described in points 6 and 7 below.
- 4. Ensure that no part of any antenna is closer than 1 meter from the walls and 0.5 meter from the ceiling of the shielded enclosure.

The number of required antenna positions depends on the size of the EUT and test setup boundary and the number of enclosures included in the setup.

5. For testing below 200 MHz, use the following criteria to determine the individual antenna positions.

- a. For setups with the side edges of the boundary 3 meters or less, one position is required and the antenna was centered with respect to the side edges of the boundary.
- b. For setups with the side edges of the boundary greater than 3 meters, use multiple antenna positions at spacings as shown in Figure 5.2-4. Determine the number of antenna positions (N) by dividing the edge-to-edge boundary distance (in meters) by 3 and rounding up to an integer.
- 6. For testing from 200 MHz up to 1 GHz, place the antenna in a sufficient number of positions such that the entire area of each EUT enclosure and the first 35 cm of cables and leads interfacing with the EUT enclosure are within the 3 dB beamwidth of the antenna.

• The antenna positions are determined by calculating the antenna coverage. For example:

Antenna Coverage = $2*(TAN(\Theta)*a)$

Where $\Theta = 1/2$ (antenna 3dB beamwidth)

- a = antenna distance from setup boundary
- 7. For testing at 1 GHz and above, place the antenna in a sufficient number of positions such that the entire area of each EUT enclosure and the first 7 cm of cables and leads interfacing with the EUT enclosure are within the 3 dB beamwidth of the antenna.
 - The antenna positions are determined by calculating the antenna coverage. For example: Antenna Coverage = $2^*(TAN(\Theta)^*a)$

Where $\Theta = 1/2$ (antenna 3dB beamwidth) a = antenna distance from setup boundary

Figure 5.2-3: Antenna Positioning

Figure 5.2-4: Multiple Antenna Positions

5.2.5 RE102 Test Procedure

- 1. The EUT was powered on, placed into operating mode and allowed sufficient time for stabilization.
- 2. The applicable frequency range was scanned, using the bandwidths and minimum measurement times specified in Table 4.4-1.
- 3. Above 30 MHz, both horizontal and vertical polarities were tested. Below 30 MHz, only vertical polarity measurements were performed.
- 4. Correction factors were added to the raw data collected from the measurement receiver. For example: *Raw Data* $(dB\mu V) + Cable loss (dB) + Antenna factors (dB) - Preamplifier gain (dB) = Corrected Data (dB\mu V/m).$
- 5. Measurements were made at each antenna position determined in 5.2.4.
- 6. The following types of antennas, listed in Table 5.2-1, were used to scan the entire frequency range:

Table 5.2-1: Antenna Type and Applicable Frequencies

Antenna	Characteristics	Frequency Range
41" Active Rod	104 cm with impedance matching network, preamplifier, and square counterpoise measuring 60cm on a side	10 kHz - 30 MHz
Biconical	137 cm tip to tip	30 MHz - 200 MHz
Double Ridged Horn	69 x 94.5 cm opening	200 MHz - 1 GHz
Double Ridged Horn	24.2 x 13.6 cm opening	1 GHz - 18 GHz

5.2.6 RE102 Test Results, Conclusions and Recommendations

The EUT Passed.

At the time of testing, no remedial actions were taken in order to achieve compliance with the requirements. No corrective measures have been recommended.

		NTS L	abs LLC		
	М	L-STD-461 Bonding a	nd Grounding Wor	ksheet	
Project :	PR163842		Customer:	Amphenol Aerospace	9
EUT:	Ethernet SwitchBox		Model:	CF-020400-06	
Procedure:	062-QTP_final draft		Date:	10/20/2022	
Test Point	Reference	Specification (mΩ), (=)</th <th>Measured (mΩ)</th> <th>Results</th> <th>Note</th>	Measured (mΩ)	Results	Note
Ground Plane	Chamber	2.5	0.21	PASS	
EUT Chassis	Ground Plane	2.5	0.8	PASS	
J3 Braid	Ground Plane	2.5	1.59	PASS	
Notes:		-			
				1 1	

						NTS La	abs LLC				
		MIL-S	TD-461 F	RE102 Ba	ndwidth	, Measu	rement Tim	e and Frequ	ency Resolu	tion	
Project :		PR163842						Customer:	Amphenol Aero	ospace	
EUT:		Ethernet Sv	vitch Box					Model:	CF-020400-06		
Procedur	e:	062-QTP_fi	nal draft					Date:	10/19/2022 - 1	0/20/2022	
Spe	ectrum /	Analyzer U	lsed:			Agilen	t N9038A M	XE, WC0584	56 (3 Hz - 44	GHz)	
Start Freq. (MHz)	Stop Freq. (MHz)	Table II Min. Meas. Time (sec/MHz)	Table II 6dB Resolutio n BW (MHz)	Min. Meas. time for this band (sec)	Number of Sweep Points	Min. Number of ranges needed	Min. Meas. Time per Range (sec)	Sampling Resolution (MHz)	Scan Settings Meet or Exceed 1%f Requirement?	Scan Settings Meet or Exceed 2xRBW Requirement?	Acceptable Scan Settings?
0.01	0.15	15	0.001	2.1	1001	1	2.1	0.00013986	No	Yes	Yes
0.15	2	1.5	0.01	2.775	1001	1	2.775	0.00184815	No	Yes	Yes
2	30	1.5	0.01	42	5600	1	42	0.00500000	Yes	Yes	Yes
30	200	0.15	0.1	25.5	3400	1	25.5	0.05000000	Yes	Yes	Yes
200	1000	0.15	0.1	120	16000	1	120	0.05000000	Yes	Yes	Yes
1000	18000	0.015	1	255	20000	1	255	0.85000000	Yes	Yes	Yes

			NTS L	abs LLC			
		MIL-STD	-461 RE102 Anten	na Positions Belo	w 200MHz		
Project :	PR163842			Customer:	Amphenol Aerospace		
EUT:	Ethernet Swi	tch Box		Model:	CF-020400-06		
Procedure:	062-QTP_fin	al draft		Date:	10/19/2022 - 10/20/20	22	
For testing belo meters or less, of the boundar	ow 200 MHz, us one position is y greater than 3	e the following criteria t required and the anten	o determine the individ na shall be centered win ntenna positions. Deterr	the test setup boundary ual antenna positions. a th respect to the side ec nine the number of ante	a. For setups with the si lges of the boundary. b	de edges of the bou For setups with th	undary 3 e side edges
	Test set	up boundary edge t	o edge distance (cr	n):	203.0	0	cm
setup on whi	nd of the test ch the EUT is nted:	Number of Lateral Positions Required	Position 1 Location (cm from the left edge)	Position 2 Location (cm from the left edge)	Position 3 Location (cm from the left edge)	Position 4 Locati the left e	
Le	eft	1	101.5	N/A	N/A	N/A	
			X TEST SETUP B N = X(in meters) N = 4 Anterna Positors EXAMPLE: X = 4 m	ed Up to an Integer $X \rightarrow \frac{3}{2}$	x, ↑ N + 1m ↓		

			NTS	Labs LLC				
		MIL-STD	-461 RE102 Antenna	Lateral Positio	ns Above 200N	lHz		
Project :	PR163842				Customer:	Amphenol Ae	rospace	
EUT:	Ethernet Switc	h Box			Model:	CF-020400-0	6	
Procedure:	062-QTP_final	draft			Date:	10/19/2022 -	10/20/2022	
within the 3 dB be	am width of the a of cables / leads EUT wid	ntenna. are positioned i th (cm) on th end of the tes	width of each EUT enclose in front of the EUT enclose e edge facing the rece st setup on which the	re, then select "No" f	for "Include Cables"		0 Left	enclosure are
		Includ	e Cables & Leads?:				Yes	
			EUT Testing	200MHz to 1GHz	:			
	na Asset Number equency Range	, Model, and	Most Narrow Beam width (degrees)	n Test Distance (meters)	Lateral Antenna c	overage (cm)		d Number of a Positions
WC005310	3106	0.2 -1GHz	28	1	49.9			2
Antenna Position Measured Left Edge o	from the	Meas	sition 2 Location, cm sured from the dge of the EUT	Antenna Position Measured Left Edge o	from the	Me	Position 4 Lo easured from t Edge of the	n the
16.	0		48.0	Not App			Not Applicab	

			EUT Testing	1GHz to 18GHz				
	a Asset Number, equency Range	Model, and	Most Narrow Beam width (degrees)	Test Distance (meters)	Lateral Antenna c	overage (cm)	Required Number of Antenna Positions	
WC005297 3115		1-18 GHz	8	1	14.0		3	
Antenna Position Measured f Left Edge of	rom the	Mea	osition 2 Location, cm sured from the Edge of the EUT	Antenna Position Measured Left Edge c	from the	Me	Position 4 Location, cm asured from the Edge of the EUT	
6.0			18.0	30.0			Not Applicable	
Antenna Position 5 Location, cm Measured from the Left Edge of the EUT		Antenna Position 6 Location, cm Measured from the Left Edge of the EUT		Antenna Position Measured Left Edge o	from the	Antenna Position 8 Location, cr Measured from the Left Edge of the EUT		
Not Applicable		N	ot Applicable	Not Applicable		Not Applicable		

			NTS	Labs LLC				
		MIL-STD-46	61 RE102 Antenna	Height Posit	ions Above 200	MHz		
Project :	PR163842				Customer:	Amphenol Ae	rospace	
EUT:	Ethernet Switch B	ox			Model:	CF-020400-0	6	
Procedure:	062-QTP_final dra	aft			Date:	10/19/2022 -	10/20/2022	
sufficient numbe	er of positions such the ante	at the entire wic nna.	re within the 3 dB bean ith of each EUT enclose dge facing the rece	ure and the first 7			with the EUT	
			EUT Testing	200MHz to 1G	iHz			
Receive Ant	tenna Asset Number, I Frequency Range	Model, and	Most Narrow Beam width (degrees)	Test Distance (meters)	Antenna cover	rage (cm)		ed Number of na Positions
WC005310	3106	0.2 -1GHz	28	1	49.9			1
Measu	tion 1 Location, cm red from the dge of the EUT	Meas	sition 2 Location, cm ured from the Edge of the EUT	Measur	ion 3 Location, cm red from the dge of the EUT		tion 4 Locati from the om Edge of	
	11.5	No	t Applicable	Not A	Applicable		Not Applical	ble
Measu	tion 5 Location, cm red from the idge of the EUT	Meas	sition 6 Location, cm ured from the Edge of the EUT	Measur	ion 7 Location, cm ed from the dge of the EUT		tion 8 Locati from the om Edge of	
Not	Applicable	No	t Applicable	Not A	Applicable		Not Applical	ble

			EUT Testing	g 1GHz to 18GH	łz		
	Receive Antenna Asset Number, Mod Frequency Range		Most Narrow Beam width (degrees)	Test Distance (meters)	Antenna cove	erage (cm)	Required Number of Antenna Positions
WC005297 3115 Antenna Position 1 Location, cm Measured from the Bottom Edge of the EUT		1-18 GHz	8	1	14.0		2
		Meas	Antenna Position 2 Location, cm Measured from the Bottom Edge of the EUT		Antenna Position 3 Location, cm Measured from the Bottom Edge of the EUT		tion 4 Location, cm Measur from the om Edge of the EUT
5.8		17.3		Not A	pplicable		Not Applicable
Antenna Position 5 Location, cm Measured from the Bottom Edge of the EUT		Antenna Position 6 Location, cm Measured from the Bottom Edge of the EUT		Antenna Position 7 Location, cm Measured from the Bottom Edge of the EUT		Antenna Position 8 Location, cm Mea from the Bottom Edge of the EUT	
Not Ap	plicable	No	t Applicable	Not A	pplicable		Not Applicable
Measured	n 9 Location, cm I from the je of the EUT	Antenna Position 10 Location, cm Measured from the Bottom Edge of the EUT		Antenna Position 11 Location, cm Measured from the Bottom Edge of the EUT		N	Position 12 Location, cm leasured from the om Edge of the EUT
Not Ap	plicable	No	t Applicable	Not A	pplicable		Not Applicable
Measured	n 13 Location, cm I from the Je of the EUT	Antenna Position 14 Location, cm Measured from the Bottom Edge of the EUT		Antenna Position 15 Location, cm Measured from the Bottom Edge of the EUT		N	Position 16 Location, cm leasured from the om Edge of the EUT
Not Ap	plicable	No	t Applicable	Not A	pplicable		Not Applicable
Measured from the M		Meas	ition 18 Location, cm ured from the Edge of the EUT	Measure	on 19 Location, cm ed from the Ige of the EUT	N	Position 20 Location, cm leasured from the om Edge of the EUT
Not Ap	plicable	No	t Applicable	Not Applicable		Not Applicable	

			NTS Labs L	LC		
			RE102 System Ve	rification		
Project :	PR163842			Customer:	Amphenol Aerospace	
EUT:	Ethernet S	witch Box		Model:	CF-020400-06	
Procedure:	062-QTP_1	final draft		Date:	10/19/2022 - 10/20/20	22
RE102 Limit:	Limit for a	ircraft and space syst	ems applications, Fixed	Wing External and Helio	opters	
Frequenc (MHz)	y	Limit (dBµV/m)	Calibrated Signal Amplitude (dBµV)	Measured Signal Amplitude (dBμV)	Deviation (dB)	Result
2.1		24.0	17.51	17.40	-0.11	PASS
12		24.0	17.64	18.00	0.36	PASS
29.5		24.0	17.21	16.90	-0.31	PASS
197		29.9	23.09	23.00	-0.09	PASS
990		43.9	36.78	36.30	-0.48	PASS
17500		68.8	61.50	61.80	0.30	PASS
Test Performe	d By: Tri	istian Gaines	1	Date:	10/19/2022 - 10/20/20	22

				NTS Labs	LLC		
		MIL-	STD-461 RI	E102 Data Shee	t: Test Resul	ts Summary	
Project :	PR163842				Customer:	Amphenol Aerospace	
EUT: Ethernet Switch Box						CF-020400-06	
Procedure:	062-QTP_final of	draft		Date:	10/19/2022 - 10/20/2022		
Input Voltage:		28VDC		Frequency:	y: DC		
Pre-Test Physic	cal Inspection:		PASS	Observation:	None		
Pre-Test Opera	tional Inspectio	on:	PASS	Observation:	None		
Frequency Range Tested (MHz)	Polarization (H/V)	Antenna Height Position	Lateral Antenna Position	Test Mode or Configuration		Limit Level	Test Result
2.0 - 30	v	1	1	Normal		t and space systems applications, Fixed ng External and Helicopters	PASS
30 - 200	Н	1	1	Normal	Limit for aircraft Wi	PASS	
30 - 200	V	1	1	Normal	Limit for aircraft and space systems applications, Fixed Wing External and Helicopters		
200 - 1,000	н	ī	1	Normal		t and space systems applications, Fixed ng External and Helicopters	PASS
200 - 1,000	V	1	ï	Normal		t and space systems applications, Fixed ng External and Helicopters	PASS

				NTS Labs	LLC			
		MIL-	STD-461 RI	E102 Data Shee	t: Test Result	ts Summary		
Project :	PR163842				Customer:	Amphenol Aerospace		
EUT: Ethernet Switch Box						CF-020400-06		
Procedure:	062-QTP_final o	draft		Date:	10/19/2022 - 10/20/2022	10/19/2022 - 10/20/2022		
Input Voltage:		28VDC			Frequency:	DC		
Pre-Test Physic	cal Inspection:		PASS	Observation:	None	•		
Pre-Test Opera	tional Inspectio	on:	PASS	Observation:	None			
Frequency Range Tested (MHz)	Polarization (H/V)	Antenna Height Position	Lateral Antenna Position	Test Mode or Configuration		Limit Level	Test Result	
200 - 1,000	н	1	2	Normal		and space systems applications, Fixed ng External and Helicopters	PASS	
200 - 1,000	V	1	2	Normal		and space systems applications, Fixed ng External and Helicopters	PASS	
1,000 - 18,000	н	1	1	Normal	Limit for aircraft and space systems applications, Fixed Wing External and Helicopters			
1,000 - 18,000	v	1	1	Normal		and space systems applications, Fixed ng External and Helicopters	PASS	
1,000 - 18,000	н	1	2	Normal		and space systems applications, Fixed ng External and Helicopters	PASS	

				NTS Labs	LLC		
		MIL-	STD-461 RI	E102 Data Shee	t: Test Resu	Its Summary	
Project :	PR163842				Customer:	Amphenol Aerospace	
EUT: Ethernet Switch Box						CF-020400-06	
Procedure: 062-QTP_final draft [10/19/2022 - 10/20/2022	
Input Voltage:		28VDC			Frequency:	DC	
Pre-Test Physic	cal Inspection:		PASS	Observation:	None		
Pre-Test Opera	tional Inspection	on:	PASS	Observation:	None		
Frequency Range Tested (MHz)	Polarization (H/V)	Antenna Height Position	Lateral Antenna Position	Test Mode or Configuration		Limit Level	Test Result
1,000 - 18,000	v	1	2	Normal		t and space systems applications, Fixed ing External and Helicopters	PASS
1,000 - 18,000	н	1	3	Normal	Limit for aircrat Wi	PASS	
1,000 - 18,000	v	1	3	Normal	Limit for aircraft and space systems applications, Fixed Wing External and Helicopters		
1,000 - 18,000	н	2	1	Normal		t and space systems applications, Fixed ing External and Helicopters	PASS
1,000 - 18,000	v	2	1	Normal		t and space systems applications, Fixed ing External and Helicopters	PASS

				NTS Labs	LLC		
		MIL-	STD-461 RI	E102 Data Shee	t: Test Result	s Summary	
Project :	PR163842				Customer:	Amphenol Aerospace	
EUT:	Ethernet Switch	Box		Model:	CF-020400-06		
Procedure:	062-QTP_final of	draft		Date:	10/19/2022 - 10/20/2022		
Input Voltage:		28VDC			Frequency:	DC	
Pre-Test Physi	cal Inspection:		PASS	Observation:	None	. A.	
Pre-Test Opera	tional Inspectio	on:	PASS	Observation:	None		
Frequency Range Tested (MHz)	Polarization (H/V)	Antenna Height Position	Lateral Antenna Position	Test Mode or Configuration		Limit Level	Test Result
1,000 - 18,000	н	2	2	Normal		and space systems applications, Fixed g External and Helicopters	PASS
1,000 - 18,000	v	2	2	Normal	Limit for aircraft Wir	PASS	
1,000 - 18,000	н	2	3	Normal	Limit for aircraft Wir	PASS	
1,000 - 18,000	v	2	3	Normal	Limit for aircraft and space systems applications, Fixed Wing External and Helicopters		
Post-Test Phys	ical Inspection	:	PASS	Observation:	None		
Post-Test Oper	ational Inspect	ion:	PASS	Observation:	None		
Test Perfo	ormed By:		Tristian Ga	nines	Date:	10/19/2022 - 10/20/2022	

		NTS Labs LLC			
		MIL-STD-461 RE102 Lo	g Sheet		
Project :	PR163842		Customer:	Amphenol Aerospace	
EUT:	Ethernet Swi	tch Box	Model:	CF-020400-06	
Procedure:	062-QTP_fin	al draft	Date:	10/19/2022 - 10/20/2022	
Date	Time	Log	Entries		Initials
10/19/22	1500	Rod antenna path checks complete. Awaiting customer	r/equipment.		TG
10/20/22	1030	Equipment arrived, began test setup.	Ļ		
1	1300	2-30MHz pass.			Ļ
1 I	1600	30MHz-1GHz pass.			TG
10/21/22	0730	Began 1-18GHz.			Ļ
Ļ	1011	RE102 Pass.			TG
Test Per	formed By:	Tristian Gaines			

GP to Chamber Bond

GP to EUT Bond

GP to Ethernet Braid Termination

RE102 System Check, 2-30MHz

RE102 Test, 2-30MHz

Test Report TR-PR163842-1 EMI, Revision 0 Page 62 of 104

RE102 System Check, 30-200MHz

RE102 Stub Radiator, 30-200MHz

RE102 Test, 30-200MHz Horizontal

RE102 Test, 30-200MHz Vertical

RE102 System Check, 200MHz-1GHz

RE102 Stub Radiator, 200MHz-1GHz

Test Report TR-PR163842-1 EMI, Revision 0 Page 63 of 104

RE102 Test, 200MHz-1GHz, Horizontal, Position 1

RE102 Test, 200MHz-1GHz, Horizontal, Position 2

RE102 Test, 200MHz-1GHz, Vertical, Position 2

RE102 Test, 200MHz-1GHz, Vertical, Position 1

RE102 System Check, 1-18GHz

RE102 Stub Radiator, 1-18GHz

Test Report TR-PR163842-1 EMI, Revision 0 Page **64** of **104**

RE102 Test, 1-18GHz, Horizontal, Position 1

RE102 Test, 1-18GHz, Vertical, Position 1

RE102 Test, 1-18GHz, Vertical, Position 2

RE102 Test, 1-18GHz, Horizontal, Position 2

RE102 Test, 1-18GHz, Horizontal, Position 3

RE102 Test, 1-18GHz, Vertical, Position 3

Test Report TR-PR163842-1 EMI, Revision 0 Page 65 of 104

RE102 Test, 1-18GHz, Vertical, Position 4

RE102 Test, 1-18GHz, Horizontal, Position 4

RE102 Test, 1-18GHz, Horizontal, Position 5

RE102 Test, 1-18GHz, Vertical, Position 5

RE102 Test, 1-18GHz, Vertical, Position 6

RE102 Test, 1-18GHz, Horizontal, Position 6

RE102 System Check: Calibrated Injected Signal = 17.51 dBuV @ 2.1 MHz

RE102 System Check: Calibrated Injected Signal = 17.21 dBuV @ 2.1 MHz

Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
29.50	16.9	24.0	-7.1	15.58	0.76	0.56	0.00	-1.32

RE102 System Check: Stub Radiator @ 29.5MHz

RE102 System (Check: Ambient Scan
----------------	---------------------

90.0 - Level - dBuV/m	
80.0-	
70.0-	Thu, Oct 20, 2022
	12:43:53 PM
60.0-	AutoScan 2022.9.30
50.0-	Res BW (kHz) 10
40.0-	Vid BW (kHz) 50000
30.0-	VERTICAL
	ETS-Lindgren 3301C Active Monopole
10.0 – <mark>Ատեցե դրածներն եր Հայ Հայ Հայ Հայ Հայ Հայ Հայ Հայ Հայ Հայ</mark>	Graph # 1
0.0	Sweep Time 90.0002
-10.0-, Frequency - MHz	<u> </u>
2.00 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 27.50 30.00	

Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
2.090	14.0	24.0	-10.0	15.57	-1.69	0.16	0.00	1.53
4.760	12.8	24.0	-11.2	14.23	-1.65	0.21	0.00	1.44
6.821	13.4	24.0	-10.6	14.70	-1.57	0.25	0.00	1.32
7.776	12.6	24.0	-11.4	13.80	-1.51	0.27	0.00	1.24
9.486	12.5	24.0	-11.5	13.64	-1.40	0.31	0.00	1.10
10.917	12.9	24.0	-11.1	13.89	-1.30	0.33	0.00	0.97
13.612	13.4	24.0	-10.6	14.06	-1.06	0.36	0.00	0.70
15.997	12.6	24.0	-11.4	13.04	-0.83	0.39	0.00	0.44
16.588	14.3	24.0	-9.7	14.70	-0.77	0.40	0.00	0.37
18.173	15.2	24.0	-8.8	15.36	-0.60	0.42	0.00	0.18
20.828	13.7	24.0	-10.3	13.59	-0.30	0.45	0.00	-0.16
22.209	15.0	24.0	-9.0	14.70	-0.14	0.47	0.00	-0.33
23.749	12.9	24.0	-11.1	12.35	0.05	0.49	0.00	-0.54
26.029	12.9	24.0	-11.1	12.01	0.33	0.52	0.00	-0.85
27.980	13.8	24.0	-10.2	12.74	0.57	0.54	0.00	-1.11
28.810	13.4	24.0	-10.6	12.14	0.67	0.55	0.00	-1.22

RE102: Ethernet Sv	witch						
90.0- Level - dBu	//m						
80.0-							Thu, Oct 20, 2022
70.0-							1:00:52 PM
60.0-							AutoScan 2022.9.30
50.0-							Res BW (kHz) 10
40.0-							Vid BW (kHz) 50000
30.0-						_	VERTICAL
20.0- ¥.tutuxxu.utľ.	¥. ¥.×.		×	<u></u>	factor (ff. 1.1)	ful	ETS-Lindgren 3301C Active Monopole
		and a state of the second state		uu (Milukaa			Graph # 2
0.0-		Frequency -	MHz				Sweep Time 90.0002
	.50 10.00 1	2.50 15.00 17					
Frequency Level	Limit	Delta Raw	Ant.	Cable	Amp Al	I Factors	

Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
2.265	13.3	24.0	-10.7	14.84	-1.69	0.16	0.00	1.53
4.625	12.9	24.0	-11.1	14.36	-1.65	0.21	0.00	1.44
6.671	14.7	24.0	-9.3	15.99	-1.57	0.25	0.00	1.32
7.931	13.7	24.0	-10.3	14.91	-1.51	0.27	0.00	1.23
9.911	13.9	24.0	-10.1	14.95	-1.37	0.31	0.00	1.06
10.897	13.7	24.0	-10.3	14.70	-1.30	0.33	0.00	0.97
12.512	13.7	24.0	-10.3	14.49	-1.16	0.35	0.00	0.81
15.847	17.0	24.0	-7.0	17.42	-0.85	0.39	0.00	0.46
17.453	13.1	24.0	-10.9	13.41	-0.67	0.41	0.00	0.26
18.178	14.1	24.0	-9.9	14.26	-0.60	0.42	0.00	0.18
20.563	12.1	24.0	-11.9	12.02	-0.33	0.45	0.00	-0.12
22.209	16.5	24.0	-7.5	16.19	-0.14	0.47	0.00	-0.33
23.299	13.7	24.0	-10.3	13.25	-0.00	0.48	0.00	-0.48
25.334	13.4	24.0	-10.6	12.65	0.24	0.51	0.00	-0.75
26.629	13.6	24.0	-10.4	12.71	0.40	0.53	0.00	-0.93
29.610	13.4	24.0	-10.6	12.11	0.77	0.56	0.00	-1.33

RE102 System Check: Calibrated Injected Signal = 23.09 dBuV @ 197 MHz

197.00 23.0 29.9 -6.9 46.42 15.09 2.01 4		
	40.56 2	23.46

RE102 System Check: Stub Radiator @ 197 MHz

RE102 System	Check:	Ambient	Scan
--------------	--------	---------	------

Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
34.20	7.6	24.0	-16.4	35.23	12.34	0.62	40.57	27.61
44.30	6.7	24.0	-17.3	34.60	11.90	0.75	40.53	27.89
57.36	5.8	24.0	-18.2	34.50	10.93	0.91	40.52	28.68
68.06	5.9	24.0	-18.1	34.83	10.49	1.05	40.51	28.98
79.96	8.4	24.0	-15.6	39.15	8.56	1.20	40.51	30.75
90.07	5.2	24.0	-18.8	35.37	9.01	1.33	40.48	30.14
100.87	5.4	24.1	-18.6	34.20	10.27	1.46	40.48	28.75
107.02	11.3	24.6	-13.3	39.02	11.26	1.49	40.48	27.72
122.48	10.0	25.8	-15.8	34.80	14.05	1.58	40.49	24.85
128.13	10.4	26.1	-15.8	35.16	14.10	1.62	40.51	24.79
139.28	11.2	26.9	-15.7	36.39	13.61	1.68	40.52	25.23
153.54	9.9	27.7	-17.9	35.86	12.76	1.76	40.52	26.00
160.04	9.3	28.1	-18.8	35.07	12.96	1.80	40.53	25.77
169.74	11.2	28.6	-17.4	35.97	13.90	1.85	40.52	24.77
183.55	11.9	29.3	-17.4	35.08	15.43	1.93	40.55	23.18
190.60	11.9	29.6	-17.7	35.36	15.13	1.97	40.58	23.47

198.85

12.0

30.0

	el - dBuV/	m							
80.0-									Thu, Oct 20, 2022
70.0-									1:55:09 PM
60.0-									AutoScan 2022.9.30
50.0-									Res BW (kHz) 100
40.0-									Vid BW (kHz) 50000
									VERTICAL
30.0-									EMCO 3109 WC005618 (1m)
10.0- 🖌		- ×		ť "	X	مارك بريك		š. iš reijent ž	Pasternack PE15A1012
0.0-	u the second	Ňv V.	Ť, P			(hangeteilen)		A PART OF A	Graph # 6
		47	Frequ	iency -	MHz				Sweep Time 60.0001
-10.0) 60	80	100	120	14	10 10	60	180 200	
requency		Limit	Delta	Row/	Ant.	Cable	Amn	All Factors	- 1
ЛНz		dBuV/m		dBuV		dB	dB	dB	
35.45	10.2	24.0			12.17		40.56		
50.01	7.4	24.0		34.75					
0.01	1.4	24.0							
0.71	0.5							27.31	
	8.5	24.0	-15.5	38.25	9.79	0.94	40.51	29.78	
68.36	7.0	24.0 24.0	-15.5 -17.0	38.25 35.95	9.79 10.51	0.94 1.05	40.51 40.51	29.78 28.95	
58.36 30.01	7.0 13.3	24.0 24.0 24.0	-15.5 -17.0 -10.7	38.25 35.95 44.24	9.79 10.51 8.40	0.94 1.05 1.20	40.51 40.51 40.51	29.78 28.95 30.91	
58.36 30.01 90.47	7.0 13.3 6.1	24.0 24.0 24.0 24.0	-15.5 -17.0 -10.7 -17.9	38.25 35.95 44.24 35.75	9.79 10.51 8.40 9.48	0.94 1.05 1.20 1.33	40.51 40.51 40.51 40.48	29.78 28.95 30.91 29.66	
68.36 30.01 90.47 99.67	7.0 13.3 6.1 7.4	24.0 24.0 24.0 24.0 24.0	-15.5 -17.0 -10.7 -17.9 -16.6	38.25 35.95 44.24 35.75 35.56	9.79 10.51 8.40 9.48 10.87	0.94 1.05 1.20 1.33 1.45	40.51 40.51 40.51 40.48 40.48	29.78 28.95 30.91 29.66 28.16	
59.71 58.36 30.01 90.47 99.67 107.12	7.0 13.3 6.1 7.4 11.8	24.0 24.0 24.0 24.0 24.0 24.0 24.6	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8	38.25 35.95 44.24 35.75 35.56 39.10	9.79 10.51 8.40 9.48 10.87 11.74	0.94 1.05 1.20 1.33 1.45 1.49	40.51 40.51 40.51 40.48 40.48 40.48	29.78 28.95 30.91 29.66 28.16 27.25	
58.36 30.01 90.47 99.67 107.12	7.0 13.3 6.1 7.4	24.0 24.0 24.0 24.0 24.0	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8 -16.1	38.25 35.95 44.24 35.75 35.56 39.10 35.49	9.79 10.51 8.40 9.48 10.87 11.74 13.00	0.94 1.05 1.20 1.33 1.45 1.49 1.58	40.51 40.51 40.51 40.48 40.48	29.78 28.95 30.91 29.66 28.16 27.25	
58.36 30.01 90.47 99.67 107.12 121.48	7.0 13.3 6.1 7.4 11.8	24.0 24.0 24.0 24.0 24.0 24.0 24.6	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8 -16.1	38.25 35.95 44.24 35.75 35.56 39.10 35.49	9.79 10.51 8.40 9.48 10.87 11.74	0.94 1.05 1.20 1.33 1.45 1.49 1.58	40.51 40.51 40.51 40.48 40.48 40.48	29.78 28.95 30.91 29.66 28.16 27.25 25.91	
58.36 30.01 90.47 99.67	7.0 13.3 6.1 7.4 11.8 9.6	24.0 24.0 24.0 24.0 24.0 24.6 25.7	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8 -16.1 -16.2	38.25 35.95 44.24 35.75 35.56 39.10 35.49 35.87	9.79 10.51 8.40 9.48 10.87 11.74 13.00	0.94 1.05 1.20 1.33 1.45 1.49 1.58 1.66	40.51 40.51 40.48 40.48 40.48 40.48	29.78 28.95 30.91 29.66 28.16 27.25 25.91 25.47	
58.36 30.01 90.47 99.67 107.12 121.48 135.38 137.18	7.0 13.3 6.1 7.4 11.8 9.6 10.4	24.0 24.0 24.0 24.0 24.0 24.6 25.7 26.6	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8 -16.1 -16.2 -16.8	38.25 35.95 44.24 35.75 35.56 39.10 35.49 35.87 35.28	9.79 10.51 8.40 9.48 10.87 11.74 13.00 13.39	0.94 1.05 1.20 1.33 1.45 1.49 1.58 1.66 1.67	40.51 40.51 40.48 40.48 40.48 40.48 40.48 40.52	29.78 28.95 30.91 29.66 28.16 27.25 25.91 25.47 25.33	
68.36 30.01 90.47 99.67 107.12 121.48 135.38	7.0 13.3 6.1 7.4 11.8 9.6 10.4 10.0	24.0 24.0 24.0 24.0 24.6 25.7 26.6 26.7	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8 -16.1 -16.2 -16.8 -15.7	38.25 35.95 44.24 35.75 35.56 39.10 35.49 35.87 35.28 36.96	9.79 10.51 8.40 9.48 10.87 11.74 13.00 13.39 13.52	0.94 1.05 1.20 1.33 1.45 1.49 1.58 1.66 1.67 1.75	40.51 40.51 40.48 40.48 40.48 40.48 40.48 40.52	29.78 28.95 30.91 29.66 28.16 27.25 25.91 25.47 25.33 24.97	
58.36 30.01 90.47 99.67 107.12 121.48 135.38 137.18 152.49	7.0 13.3 6.1 7.4 11.8 9.6 10.4 10.0 12.0	24.0 24.0 24.0 24.0 24.6 25.7 26.6 26.7 27.7	-15.5 -17.0 -10.7 -17.9 -16.6 -12.8 -16.1 -16.2 -16.8 -15.7 -17.5	38.25 35.95 44.24 35.75 35.56 39.10 35.49 35.87 35.28 36.96 35.52	9.79 10.51 8.40 9.48 10.87 11.74 13.00 13.39 13.52 13.79	0.94 1.05 1.20 1.33 1.45 1.49 1.58 1.66 1.67 1.75 1.80	40.51 40.51 40.48 40.48 40.48 40.48 40.48 40.52 40.52	29.78 28.95 30.91 29.66 28.16 27.25 25.91 25.47 25.33 24.97 24.97	

-17.9 35.33 15.25 2.02 40.56 23.29

90.0 - Lev	el - dBuV/	m							
80.0-									Thu, Oct 20, 2022
70.0-								_	2:00:55 PM
60.0-									AutoScan 2022.9.30
50.0-									Res BW (kHz) 100
40.0-									Vid BW (kHz) 50000
									VERTICAL
30.0-								1 Alexandre	EMCO 3109 WC005618
20.0-		×					Xelena		(1m)
10.0- X	بية بالعرب	λΛ.	الد بلا بر	ٳٳؠڹٳ	at There	Set and			Pasternack PE15A1012
0.0-				NUMBER OF T					Graph # 7
-10.0-			Frequ	iency -	MHz				Sweep Time 60.0001
30 40) 60	80	100	120) 14	40 1	60	180 200	
Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
35.00	10.7	24.0	-13.3	38.50	12.11	0.63	40.56	27.82	
50.51	5.8	24.0	-18.2	33.13	12.32	0.83	40.53	27.37	
60.36	9.0	24.0	-15.0	39.00	9.60	0.95	40.51	29.96	
67.51	8.9	24.0	-15.1	38.25	10.11	1.04	40.51	29.36	
79.96	15.5	24.0	-8.5	46.38	8.40	1.20	40.51	30.91	
88.92	6.2	24.0	-17.8	36.07	9.26	1.31	40.48	29.91	
99.17	5.6	24.0			10.80		40.48	28.24	
107.17	11.1	24.6			11.74		40.48	27.25	
118.58	11.1	25.5			12.85		40.48	26.07	
129.88	10.6	26.3	-15.7	36.29	13.15	1.63	40.52	25.74	
140.38	12.0	26.9			13.86			24.97	
147.63	12.5	27.4		_	13.68		40.51		
164.89	16.1	28.3	-12.3		13.70		40.53	25.00	
178.19	21.5	29.0	-7.5		13.92		40.53		
184.15	26.0	29.3	-3.3	50.42	14.22	1.94	40.55	24.39	
189.25	23.7	29.5	-5.8	47.83	14.49	1.97	40.57	24.12	

90.0- Lev	el - dBuV/	m							
80.0-									Thu, Oct 20, 2022
70.0-									2:06:14 PM
60.0-									AutoScan 2022.9.30
50.0-									Res BW (kHz) 100
40.0-									Vid BW (kHz) 50000
									HORIZONTAL
30.0-									EMCO 3109 WC005618 (1m)
10.0-		××					× *	×. ••	Pasternack PE15A1012
0.0-		\sim	utu tilu.				alog a line of		Graph # 8
-10.0-			Frequ	Jency -	MHz				Sweep Time 60.0001
30 40) 60	80	100	120	14	0 1	60	180 200	
Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz	dBuV/m	dBuV/m		dBuV	dB	dB	dB	dB	
34.65	6.0	24.0		33.58		0.63	40.57	27.61	
49.16	6.7	24.0	-17.3	34.88	11.54	0.81	40.53	28.18	
51.51	6.5	24.0	-17.5	34.63	11.55	0.84	40.53	28.14	
68.36	8.4	24.0	-15.6	37.25	10.61	1.05	40.51	28.85	
80.01	8.2	24.0	-15.8	38.96	8.56	1.20	40.51	30.75	
93.32	6.7	24.0	-17.3	36.49	9.34	1.37	40.48	29.78	
98.57	7.2	24.0	-16.8	36.30	9.95	1.44	40.48	29.09	
110.62	8.1	24.9	-16.8	35.08	11.97	1.51	40.48	27.00	
120.78	9.0	25.6	-16.7	34.01	13.86	1.57	40.48	25.05	
135.98	10.9	26.7	-15.7	36.13	13.65	1.66	40.52	25.21	
141.18	16.9	27.0	-10.1	42.19	13.54	1.69	40.52	25.28	
146.88	9.2	27.3	-18.1	35.03	12.95	1.72	40.51	25.84	
162.79	10.7	28.2	-17.5	36.36	13.07	1.81	40.53	25.65	
170.64	13.4	28.6	-15.2	38.03	14.06	1.86	40.52	24.61	
170.64									
170.64 180.34	14.1	29.1	-15.0	37.35	15.41	1.91	40.53	23.21	

RE102 System Check: Calibrated Injected Signal = 36.78 dBuV @ 990 MHz

39.12 11.95

-7.6 48.23 22.78 4.39

RE102 System Check: Stub Radiator @ 990 MHz

43.9

36.3

990.0

RE102 System	Check:	Ambient	Scan
--------------	--------	---------	------

Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors
MHz	dBuV/m	dBuV/m	dB	dBuV	-	dB	dB	dB
216.10	7.4	30.7	-23.3	35.16	10.74	2.10	40.57	27.73
262.35	9.5	32.4	-22.9	36.15	11.62	2.30	40.62	26.69
307.46	9.9	33.7	-23.9	35.42	12.62	2.50	40.66	25.54
367.06	11.2	35.3	-24.0	35.83	13.42	2.72	40.72	24.59
428.91	12.1	36.6	-24.5	35.98	13.95	2.93	40.73	23.84
474.92	14.5	37.5	-23.0	36.33	15.76	3.09	40.72	21.87
527.42	14.5	38.4	-23.9	35.76	16.22	3.26	40.69	21.22
576.77	16.0	39.2	-23.2	36.46	16.71	3.40	40.62	20.51
627.18	16.9	39.9	-23.1	36.58	17.23	3.54	40.50	19.73
685.43	17.1	40.7	-23.6	36.08	17.69	3.69	40.35	18.97
728.28	17.8	41.2	-23.4	36.03	18.16	3.81	40.20	18.23
753.78	17.3	41.5	-24.2	35.37	18.15	3.88	40.09	18.06
826.84	18.2	42.3	-24.1	34.33	19.50	4.06	39.71	16.15
851.74	18.7	42.6	-23.8	34.63	19.57	4.12	39.59	15.89
944.10	20.8	43.5	-22.7	33.96	21.75	4.31	39.24	13.18
987.75	22.0	43.8	-21.9	33.88	22.84	4.39	39.13	11.90

Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors
MHz	dBuV/m	dBuV/m	dB	dBuV	-	dB	dB	dB
206.50	8.7	30.3	-21.6	36.57	10.65	2.06	40.56	27.86
288.71	10.3	33.2	-22.9	36.22	12.27	2.42	40.64	25.95
317.36	10.5	34.0	-23.5	35.76	12.91	2.54	40.67	25.23
350.01	10.9	34.9	-23.9	35.57	13.41	2.65	40.70	24.64
434.31	12.3	36.7	-24.5	35.81	14.23	2.95	40.73	23.55
488.57	14.0	37.7	-23.7	35.45	16.18	3.14	40.71	21.40
517.87	14.7	38.3	-23.6	35.66	16.50	3.23	40.70	20.97
599.77	15.6	39.5	-23.9	35.21	17.51	3.46	40.57	19.59
608.78	16.3	39.7	-23.3	35.91	17.46	3.49	40.55	19.59
696.63	17.0	40.8	-23.8	35.87	17.76	3.72	40.32	18.84
716.53	17.5	41.1	-23.6	35.90	18.05	3.78	40.25	18.42
788.19	18.8	41.9	-23.0	36.13	18.66	3.97	39.91	17.28
809.69	20.1	42.1	-22.0	36.74	19.16	4.03	39.80	16.62
896.29	19.8	43.0	-23.2	34.77	20.24	4.22	39.39	14.93
924.25	20.7	43.3	-22.6	34.77	20.95	4.28	39.30	14.08
973.20	23.1	43.7	-20.6	34.98	22.96	4.36	39.16	11.85

774.99

831.34

875.84

935.40

975.35

18.8

18.6

19.7

22.6

23.1

41.7

42.4

42.8

43.4

43.7

RE102: Eth	ernet Swi	itch Positi	ion 1						
90.0- Lev	/el - dBuV/	'm							
80.0-									Thu, Oct 20, 2022
70.0-									3:03:42 PM
60.0-									AutoScan 2022.9.30
50.0-									Res BW (kHz) 100
40.0-									Vid BW (kHz) 50000
30.0-			Τ						HORIZONTAL
20.0-		Ť		Ť				. Či	ETS 3106 Large Horn
	×		un huden	والمعادي ور	ال الملاكل إليه ا	₩LLABÛRE I	, a ¥aal la fù		Pasternack PE15A1012
10.0-		Unit of the later of the		n	փութերի է	ularia are			Graph # 13
0.0-			Frequ	uency -	MHz				Sweep Time 120.0010
-10.0-	300	400	500	600	700	80	0 9	00 1000	
Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
203.45	11.2	30.2	-18.9	39.30	10.43	2.04	40.56	28.09	
262.70	11.3	32.4	-21.1	37.99	11.63	2.31	40.62	26.69	
300.91	10.6	33.5	-23.0	36.25	12.51	2.48	40.65	25.67	
399.96	17.7	36.0	-18.3	42.01	13.56	2.84	40.72	24.33	
400.01	19.0	36.0	-17.0	43.36	13.56	2.84	40.72	24.32	
466.57	25.7	37.3	-11.7	47.87	15.46	3.06	40.72	22.20	
549.97	20.1	38.8	-18.6	41.59	15.90	3.32	40.67	21.45	
550.02	19.7	38.8	-19.0	41.18	15.90	3.32	40.67	21.45	
625.03	23.6	39.9	-16.3	43.37	17.23	3.53	40.50	19.74	
675.73	16.5	40.6	-24.0	35.46	17.78	3.67	40.37	18.92	
724.78	16.9	41.2	-24.3	35.10	18.16	3.80	40.21	18.25	

-23.0 36.39 18.43 3.94 39.98 17.61

-23.7 34.73 19.51 4.08 39.69 16.10

-23.1 35.37 19.62 4.18 39.48 15.69

 -20.7
 36.26
 21.36
 4.29
 39.27
 13.61

 -20.6
 34.75
 23.17
 4.36
 39.16
 11.62

466.02

549.97

599.97

624.98

650.03

709.93

754.33

824.99

867.94

909.14

975.50

22.9

17.2

18.2

20.6

17.7

17.6

17.6

18.9

19.6

20.9

22.3

37.3

38.8

39.5

39.9

40.2

41.0

41.5

42.3

42.7

43.1

43.7

RE102: Eth	ernet Swi	tch Positi	on 2							
90.0- Lev	/el - dBuV	m								
80.0-									Thu	ı, Oct 20, 2022
70.0-								_		7:39 PM
60.0-									Aut	oScan 2022.9.30
50.0-								_	Res	s BW (kHz) 100
40.0-									Vid	BW (kHz) 50000
30.0-									НО	RIZONTAL
20.0-		× ¥ Ť		×			×. ×.		ETS	S 3106 Large Horn
10.0-1.44	× . *.	للبنسل إرآ		ل المأمور ال	ريني ميلي <mark>ک</mark>	ر استانی از اس ر			Pas	sternack PE15A1012
		Deeper and a later	da - Artin	And the factor			1		Gra	ıph # 14
0.0- "			Frequ	Jency -	MH7				Sw	eep Time 120.0010
-10.0- 200	300	400	500	600	700	80	0 9	1000		
Frequency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors		
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB		
201.55	16.7	30.1	-13.3	44.88	10.38	2.03	40.55	28.14		
267.90	10.7	32.5	-21.8	37.33	11.70	2.33	40.62	26.59		
349.96	13.8	34.9	-21.1	38.52	13.32	2.65	40.70	24.73		
374.96	19.4	35.5	-16.1	43.92	13.46	2.74	40.73	24.52		
425.01	20.8	36.5	-15.7	44.83	13.78	2.92	40.73	24.02		

-14.4 45.15 15.44 3.06 40.72 22.23

-21.6 38.67 15.90 3.32 40.67 21.45

-21.3 38.06 17.25 3.46 40.57 19.86

-19.3 40.30 17.23 3.53 40.50 19.74

-22.5 37.31 17.26 3.60 40.43 19.58

-23.436.3317.793.7640.2818.73-23.935.6518.163.8840.0818.05

-23.4 35.07 19.49 4.06 39.72 16.17

 -23.1
 35.36
 19.59
 4.16
 39.52
 15.76

 -22.2
 35.65
 20.37
 4.25
 39.35
 14.73

-21.5 33.88 23.17 4.36 39.16 11.63

90.0-	el - dBuV/	m							
80.0-	ei - abuv/	m							
									Thu, Oct 20, 2022
70.0-									3:14:35 PM
60.0-									AutoScan 2022.9.30
50.0-									Res BW (kHz) 100
40.0-			_						Vid BW (kHz) 50000
30.0-		Ť				×			VERTICAL
20.0-	¥	. x	Ť.	× ,	¥.,	1		يتركُّون 🛪	ETS 3106 Large Horn
A A	K		البادران	ولها فالحدين	مالي اليلاد. مالي	لافيا لوابيات			Pasternack PE15A101
10.0-		tion of the second second	- 10-10-10-10-		N. LOUINET.	. ر را بعد م ^ر را	ч 1		Graph # 15
0.0-			Frequ	Jency -	MH7				Sweep Time 120.0010
-10.0-	300	400	500	600	700	80		00 1000	
Frequency		Limit	Delta		Ant.	Cable		All Factors	
MHz		dBuV/m			dB	dB	dB	dB	
208.20	18.3	30.4		46.15			40.56		
250.10	16.2	31.9		43.19			40.62		
349.96	24.7	34.9	_	49.33			40.70		
350.01	25.6	34.9	-9.2		13.41		40.70		
449.97	21.6	37.0		44.68			40.73		
465.42	33.5	37.3	-3.8		15.48			22.19	
500.02	25.3	37.9		46.52			40.71		
599.97	22.7	39.5		42.26			40.57	19.59	
600.03	22.9	39.5	-16.6	42.48	17.52	3.46	40.57	19.59	
650.03	21.8	40.2		41.02			40.43	19.24	
700.03	19.2	40.9	-21.7	37.99	17.77	3.73	40.32	18.81	
799.99	29.3	42.0	-12.7	46.16	19.01	4.00	39.85	16.84	
800.04	26.1	42.0	-15.9	42.93	19.01	4.00	39.85	16.84	
850.04	21.3	42.5	-21.2	37.09	19.70	4.12	39.59	15.78	
936.65	21.6	43.4	-21.8	35.04	21.51	4.30	39.26	13.46	
981.00	23.1	43.8	-20.7	34.88	22 97	4 37	39.14	11.80	

90.0- Lev	/el - dBuV/	m							
80.0-									Thu, Oct 20, 2022
70.0-									3:22:19 PM
60.0-									AutoScan 2022.9.30
50.0-									Res BW (kHz) 100
40.0-									Vid BW (kHz) 50000
30.0-		Ť							VERTICAL
20.0- *	Ť	_{1 ¥}	* Ť		¥ ×	Ť	ł	×	ETS 3106 Large Horn
A 🔺	A			والملحل	بالساليس	ما والله ا	- Indiana-	The second second	Pasternack PE15A101
10.0-			a la caractera e	անուն	արերերից,				Graph # 16
0.0-			Free	Jency -	MH-				Sweep Time 120.0010
-10.0-	300	100	e i e ri	e fe		80		00 1000	
200	300	400	500	600	700				
Frequency		Limit	Delta		Ant.	Cable		All Factors	
MHz	dBuV/m		dB	dBuV		dB	dB	dB	
210.50	20.3	30.4		48.05			40.57		
250.00	17.4	31.9	-14.5	44.46	11.33	2.25	40.62	27.04	
349.96	26.3	34.9	-8.5	50.96	13.41	2.65	40.70	24.64	
350.01	26.9	34.9	-8.0	51.51	13.41	2.65	40.70	24.64	
449.97	23.1	37.0	-13.9	46.15	14.68	3.01	40.73	23.04	
465.02	34.0	37.3	-3.3	56.19	15.45	3.06	40.72	22.21	
500.02	23.1	37.9	-14.8	44.29	16.35	3.18	40.71	21.18	
550.02	24.3	38.8	-14.5	45.70	15.94	3.32	40.67	21.41	
649.98	23.7	40.2	-16.5	42.94	17.60	3.60	40.43	19.24	
650.03	23.5	40.2	-16.7	42.74	17.60	3.60	40.43	19.24	
700.03	21.8	40.9	-19.1	40.61	17.77	3.73	40.32	18.81	
799.99	27.0	42.0	-15.0	43.88	19.01	4.00	39.85	16.84	
300.04	26.4	42.0	-15.7	43.19	19.01	4.00	39.85	16.84	
350.04	21.0	42.5	-21.5	36.81	19.70	4.12	39.59	15.78	
908.69	21.6	43.1	-21.5	36.15	20.54	4.25	39.35	14.56	

-6.9 39.66 45.50 18.48 41.80 -22.18

RE102 System Check: Calibrated Injected Signal = 61.5 dBuV @ 17.5 GHz

RE102 System Check: Stub Radiator @ 17.5 GHz

68.8

61.8

17500.2

90.0- Le	vel - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									8:28:24 AM
60.0-									AutoScan 2022.9.30
50.0-							Mar. k. 🗸	×	Res BW (kHz) 1000
40.0-	×	× ×	* *	(11) (11) (11) (11) (11) (11) (11) (11)	×				Vid BW (kHz) 50000
									HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 3
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0-¦ 1000	4000	6000	8000	1000	0 120	00 14	000 10	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz		dBuV/m	dB	dBuV	dB	dB	dB	dB	
082.5	32.1	44.6	-12.5	45.33	25.66	4.59	43.43	13.18	
2178.2	35.5	50.7	-15.2	43.24	28.96	6.45	43.15	7.74	
3843.4	41.1	55.6	-14.6	41.13	34.29	8.50	42.86	0.07	
4838.8	41.9	57.6	-15.8	40.12	34.86	9.82	42.92	-1.75	
5618.3	43.6	58.9	-15.3	40.32	35.83	10.50	43.02	-3.31	
7335.4	45.7	61.2	-15.5	38.60	38.80	11.72	43.44	-7.08	
3000.1	45.8	62.0	-16.2	38.39	38.70	12.51	43.84	-7.38	
5000.1									
	47.8	63.1	-15.4	38.47	39.63	13.19	43.54	-9.28	
9162.1	47.8 47.2	63.1 64.2						-9.28 -10.40	
9162.1 10391.3			-17.1	36.78	39.80	14.32	43.72		
9162.1 10391.3 11614.5	47.2	64.2	-17.1 -17.9	36.78 35.08	39.80 40.63	14.32 15.07	43.72 43.43	-10.40	
9162.1 10391.3 11614.5 12547.0	47.2 47.3	64.2 65.2	-17.1 -17.9 -16.7	36.78 35.08 35.33	39.80 40.63 40.50	14.32 15.07 16.16	43.72 43.43 42.77	-10.40 -12.27	
9162.1 10391.3 11614.5 12547.0 13169.2	47.2 47.3 49.2	64.2 65.2 65.9	-17.1 -17.9 -16.7 -17.4	36.78 35.08 35.33 33.17	39.80 40.63 40.50 41.85	14.32 15.07 16.16 15.97	43.72 43.43 42.77 42.14	-10.40 -12.27 -13.89	
9162.1 10391.3 11614.5 12547.0 13169.2 14104.3	47.2 47.3 49.2 48.8	64.2 65.2 65.9 66.3	-17.1 -17.9 -16.7 -17.4 -16.3	36.78 35.08 35.33 33.17 32.75	39.80 40.63 40.50 41.85 43.01	14.32 15.07 16.16 15.97 16.44	43.72 43.43 42.77 42.14 41.65	-10.40 -12.27 -13.89 -15.68	
9162.1 10391.3 11614.5 12547.0 13169.2 14104.3 15213.6 16567.7	47.2 47.3 49.2 48.8 50.6	64.2 65.2 65.9 66.3 66.9	-17.1 -17.9 -16.7 -17.4 -16.3 -18.3	36.78 35.08 35.33 33.17 32.75 33.08	39.80 40.63 40.50 41.85 43.01 40.89	14.32 15.07 16.16 15.97 16.44 16.81	43.72 43.43 42.77 42.14 41.65 41.53	-10.40 -12.27 -13.89 -15.68 -17.80	

RE102 System Check: Ambient Scan

90.0- Le	vel - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									8:33:46 AM
60.0-				+				×	AutoScan 2022.9.30
50.0-						x	Ťωι		Res BW (kHz) 1000
40.0-	¥.		x x X	,u.,¥.	u∰aay balaki (Ì				Vid BW (kHz) 50000
	No. of Concession, Name								VERTICAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 4
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0- <mark>,,</mark> 1000	4000	6000	8000	1000	0 120	00 14	000 1	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz		dBuV/m		dBuV		dB	dB	dB	
053.6	31.7	44.4	-12.7	46.15	24.44	4.52	43.44	14.48	
2113.6	34.7	50.4	-15.7	43.47	28.05	6.35	43.17	8.77	
3916.5	40.5	55.8	-15.3	41.54	33.17	8.61	42.86	1.08	
5185.6	42.3	58.2	-15.9	40.67	34.44	10.15	42.96	-1.63	
5779.8	42.4	59.2	-16.8	40.00	34.70	10.72	43.07	-2.35	
/115.2	44.0	61.0	-16.9	38.87	36.96	11.60	43.41	-5.15	
7733.2	44.6	61.7	-17.1	38.61	37.43	12.15	43.64	-5.94	
3443.8	45.4	62.4	-17.0	38.15	38.19	12.66	43.58	-7.27	
5443.0	10.1		17.0						
	46.2	63.6		37.90	38.52	13.46	43.65	-8.33	
9686.6			-17.4			13.46 14.31			
9686.6 0588.5	46.2	63.6	-17.4 -17.8	37.22	38.72	14.31	43.68		
9686.6 0588.5 2020.0	46.2 46.6	63.6 64.4	-17.4 -17.8 -17.8	37.22 35.86	38.72 39.58	14.31 15.34	43.68 43.06	-9.35	
9686.6 10588.5 12020.0 13584.9	46.2 46.6 47.7	63.6 64.4 65.5	-17.4 -17.8 -17.8 -17.0	37.22 35.86 33.99	38.72 39.58 41.44	14.31 15.34 16.33	43.68 43.06 42.17	-9.35 -11.86	
9686.6 10588.5 12020.0 13584.9 14243.7	46.2 46.6 47.7 49.6	63.6 64.4 65.5 66.6	-17.4 -17.8 -17.8 -17.0 -15.0	37.22 35.86 33.99 34.52	38.72 39.58 41.44 42.49	14.31 15.34 16.33 16.53	43.68 43.06 42.17 41.62	-9.35 -11.86 -15.60	
9686.6 10588.5 12020.0 13584.9 14243.7 15041.0 16804.8	46.2 46.6 47.7 49.6 51.9	63.6 64.4 65.5 66.6 67.0	-17.4 -17.8 -17.8 -17.0 -15.0 -19.1	37.22 35.86 33.99 34.52 32.37	38.72 39.58 41.44 42.49 40.62	14.31 15.34 16.33 16.53 16.92	43.68 43.06 42.17 41.62 41.55	-9.35 -11.86 -15.60 -17.40	

RE102 System Check: Ambient Scan

90.0- Lev	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									8:42:47 AM
60.0-									AutoScan 2022.9.30
50.0-							¥	<u>گر</u> ان پ	Res BW (kHz) 1000
						وأأحبتها حافدت			Vid BW (kHz) 50000
40.0-	Card and the second				1 - 1 - 1 - 1 - 1				VERTICAL
30.0-6									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM-
10.0-									0118P
0.0-									Graph # 5
-10.0-,,			Frequ	iency -	MHz				Sweep Time 270.0012
1000	4000	6000	8000	1000	0 120	00 14	000 10	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
ЛНz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
030.6	31.4	44.2	-12.8	45.96	24.40	4.47	43.44	14.57	
2131.4	34.7	50.5	-15.9	43.47	27.97	6.38	43.17	8.81	
3515.3	39.6	54.8	-15.2	42.50	31.83	8.18	42.88	2.88	
5230.7	42.1	58.3	-16.2	40.38	34.50	10.19	42.97	-1.73	
607.2	42.2	58.9	-16.7	39.74	34.96	10.48	43.02	-2.42	
'359.2	44.9	61.2	-16.4	38.89	37.70	11.73	43.44	-5.99	
7486.7	45.0	61.4	-16.4	38.98	37.63	11.89	43.46	-6.06	
3728.6	45.2	62.7	-17.5	37.43	38.34	12.97	43.53	-7.78	
0067.4	46.8	64.0	-17.2	37.93	38.70	13.89	43.78	-8.82	
1171.6	46.4	64.9	-18.4	35.98	39.04	14.99	43.59	-10.44	
1702.9	47.5	65.3	-17.7	35.88	39.80	15.21	43.35	-11.67	
3644.4	49.4	66.6	-17.2	33.71	41.41	16.33	42.10	-15.65	
4406.0	52.2	67.1	-14.8	34.93	42.11	16.77	41.59	-17.29	
4828.5	49.8	67.3	-17.5	33.03	41.24	17.08	41.56	-16.77	
6825.2	50.3	68.4	-18.2	32.25	41.55	18.21	41.75	-18.01	

90.0- Lev	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									8:49:41 AM
60.0-									AutoScan 2022.9.30
50.0-							Хи _х	× 1	Res BW (kHz) 1000
40.0-	×	×	و الآن	<mark>∛li</mark> ¥. n	w. 💥	u dagi di <mark>X</mark> u			Vid BW (kHz) 50000
	-								HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 6
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0-,, 1000	4000	6000	8000	1000	0 120	00 14	000 10	6000 18000	
requency	Loval	Limit	Delta	Dow	Ant.	Cable	Amn	All Factors	
/Hz		dBuV/m		dBuV		dB	dB	dB	
002.6	31.9	44.0			24.93		43.45	-	
2141.6	35.6	50.6			28.92		43.16		
631.7	40.4	55.1			33.09		42.87		
764.8	42.6	57.5			34.56		42.91		
582.6	43.3	58.9				10.46			
371.1	45.1	61.3				11.74			
'545.3	46.0	61.5				11.99			
128.1	46.8	63.1				13.21			
650.0	46.1	63.6				13.42			
1576.2	47.7	65.2						-12.20	
1794.7	47.6	65.3						-12.82	
3524.5	48.9	66.5						-16.23	
4265.8	51.9	67.0	-15.1	33.80	43.14	16.57	41.61	-18.09	
5125.2	50.2	67.5	-17.2	33.88	41.05	16.85	41.54	-16.36	
6804.8	50.4	68.4	-18.0	31.39	42.59	18.16	41.74	-19.01	
0004.0									

90.0- Lev	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									9:00:00 AM
60.0-									AutoScan 2022.9.30
50.0-							Х. х	الله المراجع (الم	Res BW (kHz) 1000
40.0-	Υ.	. * * *	×	<mark>¥</mark> ∦	a tan na daa	_{nt} ¥rtu ^{ta} ¥u			Vid BW (kHz) 50000
					mar p				HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 7
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0-¦ 1000	4000	6000	8000	1000	0 120	00 14	000 10	6000 18000	
requency	Level	Limit	Delta	Baw	Ant.	Cable	Amp	All Factors	-1
/Hz		dBuV/m		dBuV		dB	dB	dB	
021.3	31.6	44.1		45.51	25.11	4.45	43.45	13.88	
206.2	35.8	50.8	-15.0	43.52	28.98	6.49	43.15	7.68	
902.9	41.3	55.8	-14.4	41.40	34.19	8.59	42.86	0.08	
000.3	43.3	57.9	-14.6	41.31	35.10	9.85	42.95	-1.99	
633.6	44.6	58.9	-14.3	41.38	35.77	10.52	43.02	-3.26	
335.7	44.9	60.0	-15.1	40.63	36.43	11.03	43.22	-4.23	
435.3	47.1	62.4	-15.3	38.90	39.17	12.65	43.58	-8.24	
125.6	47.1	63.1	-16.0	37.83	39.60	13.21	43.53	-9.28	
649.2	47.2	63.6	-16.4	38.17	39.20	13.42	43.64	-8.99	
0673.5	48.9	64.5	-15.6	38.38	39.75	14.41	43.67	-10.49	
2539.3	48.3	65.9	-17.5	34.48	40.50	16.13	42.78	-13.85	
3439.5	49.2	66.5	-17.3	33.33	42.04	16.08	42.25	-15.87	
4396.7	53.5	67.1	-13.6	35.61	42.72	16.77	41.59	-17.90	
5195.7	51.7	67.5	-15.8	35.43	41.00	16.80	41.53	-16.26	
6882.2	50.5	68.4	-17.9	30.93	43.02	18.35	41.78	-19.58	
7828.3	57.9	68.9	-11.0	32.32	48.24	18.93	41.57	-25.60	

17829.1

56.7

68.9

	/el - dBuV/	m 🛛							
80.0-									Fri, Oct 21, 2022
70.0-									9:05:12 AM
60.0-				+					AutoScan 2022.9.30
50.0-		_				v.			Res BW (kHz) 1000
40.0-	×	, × Xuluard	× ×	×	Հ թ.⊁ահա	X			Vid BW (kHz) 50000
	and the second second								VERTICAL
30.0-6									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 8
-10.0-,,			Frequ	Jency -	MHz				Sweep Time 270.0012
1000	4000	6000	8000	1000	0 120	00 14	000 1	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
ЛНz		dBuV/m	dB	dBuV	dB	dB	dB	dB	
022.1	31.2	44.1	-12.9	45.83	24.40	1.46	43.45	44.50	
132.3	04.0					4.40	45.45	14.59	
102.0	34.3	50.5	-16.2		27.97		43.45		
	34.3 41.0	50.5 55.8		43.14		6.38		8.81	
916.5			-14.8	43.14 42.05	27.97 33.17	6.38	43.17 42.86	8.81 1.08	
916.5 126.1	41.0	55.8	-14.8 -16.4	43.14 42.05 40.30	27.97 33.17 34.30	6.38 8.61	43.17 42.86 42.96	8.81 1.08 -1.39	
916.5 126.1 535.8	41.0 41.7	55.8 58.1	-14.8 -16.4 -16.2	43.14 42.05 40.30 40.31	27.97 33.17 34.30 34.89	6.38 8.61 10.05	43.17 42.86 42.96 42.99	8.81 1.08 -1.39 -2.31	
916.5 126.1 535.8 232.5	41.0 41.7 42.6	55.8 58.1 58.8	-14.8 -16.4 -16.2 -16.7	43.14 42.05 40.30 40.31 38.72	27.97 33.17 34.30 34.89 37.43	6.38 8.61 10.05 10.42	43.17 42.86 42.96 42.99 43.43	8.81 1.08 -1.39 -2.31 -5.68	
916.5 126.1 535.8 232.5 997.5	41.0 41.7 42.6 44.4	55.8 58.1 58.8 61.1	-14.8 -16.4 -16.2 -16.7 -16.7	43.14 42.05 40.30 40.31 38.72 38.95	27.97 33.17 34.30 34.89 37.43 37.70	6.38 8.61 10.05 10.42 11.67	43.17 42.86 42.96 42.99 43.43 43.84	8.81 1.08 -1.39 -2.31 -5.68 -6.37	
916.5 126.1 535.8 232.5 997.5 749.8	41.0 41.7 42.6 44.4 45.3	55.8 58.1 58.8 61.1 62.0	-14.8 -16.4 -16.2 -16.7 -16.7 -16.7	43.14 42.05 40.30 40.31 38.72 38.95 38.31	27.97 33.17 34.30 34.89 37.43 37.70 38.30	6.38 8.61 10.05 10.42 11.67 12.51	43.17 42.86 42.96 42.99 43.43 43.84 43.53	8.81 1.08 -1.39 -2.31 -5.68 -6.37 -7.77	
916.5 126.1 535.8 232.5 997.5 749.8 0415.9	41.0 41.7 42.6 44.4 45.3 46.1	55.8 58.1 58.8 61.1 62.0 62.7	-14.8 -16.4 -16.2 -16.7 -16.7 -16.7 -16.7	43.14 42.05 40.30 40.31 38.72 38.95 38.31 37.51	27.97 33.17 34.30 34.89 37.43 37.70 38.30 38.70	6.38 8.61 10.05 10.42 11.67 12.51 13.00 14.33	43.17 42.86 42.99 43.43 43.84 43.53 43.71	8.81 1.08 -1.39 -2.31 -5.68 -6.37 -7.77	
916.5 126.1 535.8 232.5 997.5 749.8 0415.9 1076.4	41.0 41.7 42.6 44.4 45.3 46.1 46.8	55.8 58.1 58.8 61.1 62.0 62.7 64.3	-14.8 -16.4 -16.2 -16.7 -16.7 -16.7 -16.7 -17.4 -18.2	43.14 42.05 40.30 40.31 38.72 38.95 38.31 37.51 36.47	27.97 33.17 34.30 34.89 37.43 37.70 38.30 38.70 38.85	6.38 8.61 10.05 10.42 11.67 12.51 13.00 14.33 14.90	43.17 42.86 42.96 43.43 43.43 43.53 43.53 43.71 43.60	8.81 1.08 -1.39 -2.31 -5.68 -6.37 -7.77 -9.32	
916.5 126.1 535.8 232.5 997.5 749.8 0415.9 1076.4 2259.7	41.0 41.7 42.6 44.4 45.3 46.1 46.8 46.6	55.8 58.1 58.8 61.1 62.0 62.7 64.3 64.8	-14.8 -16.4 -16.2 -16.7 -16.7 -16.7 -17.4 -18.2 -18.1	43.14 42.05 40.30 40.31 38.72 38.95 38.31 37.51 36.47 35.07	27.97 33.17 34.30 34.89 37.43 37.43 37.70 38.30 38.70 38.85 39.50	6.38 8.61 10.05 10.42 11.67 12.51 13.00 14.33 14.90 15.95	43.17 42.86 42.99 43.43 43.84 43.53 43.71 43.60 42.95	8.81 1.08 -1.39 -2.31 -5.68 -6.37 -7.77 -9.32 -10.15	
9916.5 126.1 535.8 232.5 7997.5 749.8 0415.9 1076.4 2259.7 3006.0 4452.8	41.0 41.7 42.6 44.4 45.3 46.1 46.8 46.6 47.6	55.8 58.1 58.8 61.1 62.0 62.7 64.3 64.8 65.7	-14.8 -16.4 -16.2 -16.7 -16.7 -16.7 -17.4 -18.2 -18.1 -17.2	43.14 42.05 40.30 38.72 38.95 38.31 37.51 36.47 35.07 34.13	27.97 33.17 34.30 34.89 37.43 37.70 38.30 38.70 38.85 39.50 40.71	6.38 8.61 10.05 10.42 11.67 12.51 13.00 14.33 14.90 15.95 16.18	43.17 42.86 42.99 43.43 43.84 43.53 43.71 43.60 42.95 42.08	8.81 1.08 -1.39 -2.31 -5.68 -6.37 -7.77 -9.32 -10.15 -12.49	
916.5 126.1 535.8 232.5 7997.5 749.8 0415.9 1076.4 2259.7 3006.0	41.0 41.7 42.6 44.4 45.3 46.1 46.8 46.6 47.6 48.9	55.8 58.1 58.8 61.1 62.0 62.7 64.3 64.8 65.7 66.2	-14.8 -16.4 -16.2 -16.7 -16.7 -16.7 -17.4 -18.2 -18.1 -17.2 -14.6	43.14 42.05 40.30 40.31 38.72 38.95 38.31 37.51 36.47 35.07 34.13 35.14	27.97 33.17 34.30 34.89 37.43 37.70 38.30 38.70 38.85 39.50 40.71 42.19	6.38 8.61 10.05 10.42 11.67 12.51 13.00 14.33 14.90 15.95 16.18 16.74	43.17 42.86 42.99 43.43 43.84 43.53 43.71 43.60 42.95 42.08 41.58	8.81 1.08 -1.39 -2.31 -5.68 -6.37 -7.77 -9.32 -10.15 -12.49 -14.81	

-12.2 32.20 47.17 18.93 41.57 -24.53

90.0- Lev	/el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									9:12:17 AM
60.0-									AutoScan 2022.9.30
50.0-							×		Res BW (kHz) 1000
			X	Xan Xan	المتغيير 🕅 راي	LI <mark>XII.</mark> MU	la l		Vid BW (kHz) 50000
40.0-	<u>toř</u>								VERTICAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM-
10.0-									0118P
0.0-								_	Graph # 9
-10.0-,,			Frequ	iency -	MHz				Sweep Time 270.0012
1000	4000	6000	8000	1000	0 120	00 14	000 1	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
ЛНz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
005.1	31.1	44.0	-12.9	45.73	24.40	4.42	43.45	14.64	
463.8	38.9	51.8	-12.9	46.27	28.88	6.83	43.07	7.36	
625.8	39.4	55.1	-15.8	41.77	32.15	8.31	42.88	2.41	
344.1	40.5	56.7	-16.2	41.54	32.61	9.17	42.86	1.07	
511.2	41.8	58.7	-16.9	39.38	35.03	10.40	42.99	-2.45	
252.1	44.1	61.1	-17.0	38.34	37.50	11.68	43.43	-5.76	
438.2	44.6	61.3	-16.8	38.52	37.70	11.81	43.45	-6.06	
850.1	45.8	62.8	-17.1	37.65	38.50	13.12	43.53	-8.10	
676.4	45.1	63.6	-18.5	36.84	38.46	13.45	43.65	-8.26	
0950.6	46.4	64.7	-18.3	36.49	38.80	14.77	43.62	-9.94	
2611.6	47.9	65.9	-18.0	34.51	39.67	16.38	42.67	-13.38	
3375.8	48.3	66.4	-18.1	33.15	41.35	16.00	42.22	-15.13	
4340.6	53.1	67.0	-13.9	35.80	42.22	16.68	41.60	-17.30	
5306.2	49.5	67.6	-18.1	34.29	39.75	16.93	41.52	-15.16	
6859.2	49.2	68.4	-19.2	31.08	41.63	18.29	41.77	-18.15	

RE102: Eth	ernet Swi	itch Posit	ion 3						
90.0- Lev	el - dBuV/	'm							
80.0-									Fri, Oct 21, 2022
70.0-									9:18:10 AM
60.0-									AutoScan 2022.9.30
50.0-						x	Х.X.		Res BW (kHz) 1000
40.0-	×	××	× × ×	in di Xindu	a a lua da Afri	A. 61,0100			Vid BW (kHz) 50000
a se la seconda de	Sector Sector						•		HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 10
			Frequ	uency -	MHz				Sweep Time 270.0012
-10.0-¦ 1000	4000	6000	8000	1000	0 120	00 14	000 1	6000 18000	· · ·
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
ИНz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
036.6	31.6	44.3	-12.7	45.26	25.27	4.49	43.44	13.69	
2103.4	35.3	50.4	-15.1	43.12	28.99	6.34	43.17	7.84	
867.2	40.8	55.7	-14.8	40.90	34.27	8.54	42.86	0.06	
5115.1	42.7	58.1	-15.4	40.33	35.26	10.04	42.96	-2.34	
511.2	43.3	58.7	-15.5	39.87	35.98	10.40	42.99	-3.39	
344.7	45.0	61.2	-16.3	37.89	38.80	11.73	43.44	-7.09	
7960.1	46.2	61.9	-15.7	38.94	38.62	12.45	43.81	-7.26	
3443.8	46.8	62.4	-15.6	38.52	39.19	12.66	43.58	-8.27	
9565.9	46.4	63.5	-17.1	37.15	39.50	13.35	43.60	-9.25	
1572.8	47.8	65.2	-17.4	35.62	40.60	15.07	43.47	-12.20	
2250.3	48.4	65.7	-17.2	35.03	40.40	15.98	42.96	-13.42	
3215.1	50.4	66.3	-15.9	34.60	42.01	15.94	42.16	-15.78	
4291.3	51.6	67.0						-18.03	
4876.1	50.6	67.3						-17.03	
0000 7	49.2	68.3	-19.1	32.10	40.81	17.88	41.62	-17.07	
16550.7	70.2	00.0							

	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									9:25:16 AM
60.0-								¥	AutoScan 2022.9.30
50.0-						× ¥.	X x	×.	Res BW (kHz) 1000
40.0-	. Xu		, and a	رون کی دور دی ماہر روب کے مار	in a state	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			Vid BW (kHz) 50000
									HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 11
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0- <mark>,,</mark> 1000	4000	6000	8000	1000	0 120	00 14	000 1	6000 18000	
requency	Level	Limit	Delta	Baw	Ant.	Cable	Amp	All Factors	
MHz		dBuV/m		dBuV		dB	dB	dB	
1080.8	32.5	44.6			25.65	4.58	43.43	13.20	
2137.4	35.5	50.5	-15.0	43.39	28.93	6.39	43.17	7 85	
							10.17	1.00	
3928.4	41.2	55.8	-14.6	41.25	34.14		42.86		
	41.2 42.5	55.8 57.9			34.14 35.10	8.63		0.09	
5020.7			-15.4	40.46	35.10	8.63	42.86 42.95	0.09 -2.03	
5020.7 5684.6	42.5	57.9	-15.4 -14.3	40.46 41.36	35.10 35.77	8.63 9.88	42.86 42.95 43.04	0.09 -2.03 -3.32	
5020.7 5684.6 5354.4	42.5 44.7	57.9 59.0	-15.4 -14.3 -16.1	40.46 41.36 39.65	35.10 35.77 36.40	8.63 9.88 10.59	42.86 42.95 43.04 43.23	0.09 -2.03 -3.32 -4.22	
5020.7 5684.6 5354.4 7932.1	42.5 44.7 43.9	57.9 59.0 60.0	-15.4 -14.3 -16.1 -15.2	40.46 41.36 39.65 39.41	35.10 35.77 36.40 38.64	8.63 9.88 10.59 11.05	42.86 42.95 43.04 43.23 43.79	0.09 -2.03 -3.32 -4.22 -7.25	
5020.7 5684.6 5354.4 7932.1 3528.0	42.5 44.7 43.9 46.7	57.9 59.0 60.0 61.9	-15.4 -14.3 -16.1 -15.2 -15.7	40.46 41.36 39.65 39.41 38.44	35.10 35.77 36.40 38.64 39.16	8.63 9.88 10.59 11.05 12.40	42.86 42.95 43.04 43.23 43.79 43.54	0.09 -2.03 -3.32 -4.22 -7.25 -8.35	
5020.7 5684.6 6354.4 7932.1 3528.0 9659.4	42.5 44.7 43.9 46.7 46.8	57.9 59.0 60.0 61.9 62.5	-15.4 -14.3 -16.1 -15.2 -15.7 -16.8	40.46 41.36 39.65 39.41 38.44 37.79	35.10 35.77 36.40 38.64 39.16 39.24	8.63 9.88 10.59 11.05 12.40 12.74 13.43	42.86 42.95 43.04 43.23 43.79 43.54 43.64	0.09 -2.03 -3.32 -4.22 -7.25 -8.35	
5020.7 5684.6 5354.4 7932.1 3528.0 9659.4 11380.7	42.5 44.7 43.9 46.7 46.8 46.8	57.9 59.0 60.0 61.9 62.5 63.6	-15.4 -14.3 -16.1 -15.2 -15.7 -16.8 -17.5	40.46 41.36 39.65 39.41 38.44 37.79 35.55	35.10 35.77 36.40 38.64 39.16 39.24 40.26	8.63 9.88 10.59 11.05 12.40 12.74 13.43 15.24	42.86 42.95 43.04 43.23 43.79 43.54 43.54 43.55	0.09 -2.03 -3.32 -4.22 -7.25 -8.35 -9.03	
5020.7 5684.6 5354.4 7932.1 3528.0 9659.4 11380.7 12443.3	42.5 44.7 43.9 46.7 46.8 46.8 47.5	57.9 59.0 60.0 61.9 62.5 63.6 65.0	-15.4 -14.3 -16.1 -15.2 -15.7 -16.8 -17.5 -17.1	40.46 41.36 39.65 39.41 38.44 37.79 35.55 35.33	35.10 35.77 36.40 38.64 39.16 39.24 40.26 40.49	8.63 9.88 10.59 11.05 12.40 12.74 13.43 15.24 15.72	42.86 42.95 43.04 43.23 43.79 43.54 43.64 43.55 42.87	0.09 -2.03 -3.32 -4.22 -7.25 -8.35 -9.03 -11.95	
5020.7 5684.6 5354.4 7932.1 8528.0 9659.4 11380.7 12443.3 13645.2	42.5 44.7 43.9 46.7 46.8 46.8 46.8 47.5 48.7	57.9 59.0 60.0 61.9 62.5 63.6 65.0 65.8	-15.4 -14.3 -16.1 -15.2 -15.7 -16.8 -17.5 -17.1 -16.4	40.46 41.36 39.65 39.41 38.44 37.79 35.55 35.33 33.78	35.10 35.77 36.40 38.64 39.16 39.24 40.26 40.49 42.21	8.63 9.88 10.59 11.05 12.40 12.74 13.43 15.24 15.72 16.33	42.86 42.95 43.04 43.23 43.79 43.54 43.64 43.55 42.87 42.09	0.09 -2.03 -3.32 -4.22 -7.25 -8.35 -9.03 -11.95 -13.33	
5020.7 5684.6 5354.4 7932.1 3528.0 9659.4 11380.7 12443.3	42.5 44.7 43.9 46.7 46.8 46.8 46.8 47.5 48.7 50.2	57.9 59.0 60.0 61.9 62.5 63.6 65.0 65.8 66.6	-15.4 -14.3 -16.1 -15.2 -15.7 -16.8 -17.5 -17.1 -16.4 -14.5	40.46 41.36 39.65 39.41 38.44 37.79 35.55 35.33 33.78 34.42	35.10 35.77 36.40 38.64 39.16 39.24 40.26 40.26 40.49 42.21 43.13	8.63 9.88 10.59 11.05 12.40 12.74 13.43 15.24 15.72 16.33 16.50	42.86 42.95 43.04 43.23 43.79 43.54 43.55 42.87 42.09 41.62	0.09 -2.03 -3.32 -4.22 -7.25 -8.35 -9.03 -11.95 -13.33 -16.45	
5020.7 5684.6 5354.4 7932.1 3528.0 9659.4 11380.7 12443.3 13645.2 14217.3	42.5 44.7 43.9 46.7 46.8 46.8 47.5 48.7 50.2 52.4	57.9 59.0 60.0 61.9 62.5 63.6 65.0 65.8 66.6 67.0	-15.4 -14.3 -16.1 -15.2 -15.7 -16.8 -17.5 -17.1 -16.4 -14.5 -17.3	40.46 41.36 39.65 39.41 38.44 37.79 35.55 35.33 33.78 34.42 34.01	35.10 35.77 36.40 38.64 39.16 39.24 40.26 40.49 42.21 43.13 41.00	8.63 9.88 10.59 11.05 12.40 12.74 13.43 15.24 15.72 16.33 16.50 16.80	42.86 42.95 43.04 43.23 43.79 43.54 43.55 42.87 42.09 41.62 41.53	0.09 -2.03 -3.32 -4.22 -7.25 -8.35 -9.03 -11.95 -13.33 -16.45 -18.01	

RE102: Eth	ernet Swi	tch Posi	tion 4						
90.0- Lev	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									9:31:43 AM
60.0-									AutoScan 2022.9.30
50.0-						×	ц¥ — "	, and the second s	Res BW (kHz) 1000
40.0-		مقابلت بدلائين	w ×	a sa <mark>X</mark> x	ر با میلان ا	,¥.,,bit			Vid BW (kHz) 50000
					19-14 - F		1		VERTICAL
30.0-0-	-								EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 12
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0- <mark>,,</mark> 1000	4000	6000	8000	1000	0 120	00 14	000 10	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz ,	dBuV/m	dBuV/m	n dB	dBuV	dB	dB	dB	dB	
002.6	30.5	44.0	-13.5	45.12	24.40	4.41	43.45	14.64	
2596.4	36.4	52.2	-15.8	43.22	29.19	7.00	43.03	6.84	
8925.8	40.4	55.8	-15.4	41.50	33.15	8.62	42.86	1.09	
989.2	41.4	57.9	-16.4	40.47	34.08	9.85	42.95	-0.97	
270.6	42.2	58.4	-16.2	40.43	34.50	10.22	42.97	-1.75	
251.2	43.8	61.1	-17.3	38.04	37.50	11.68	43.43	-5.76	
7694.9	45.3	61.6	-16.3	39.29	37.51	12.12	43.61	-6.03	
9365.3	46.7	63.3	-16.6	38.40	38.67	13.24	43.56	-8.35	
628.8	45.4	63.6	-18.1	37.23	38.43	13.40	43.63	-8.20	
10716.0	47.5	64.5	-17.0	37.94	38.73	14.46	43.66	-9.53	
2447.5	47.7	65.8	-18.1	35.24	39.60	15.73	42.87	-12.47	
3675.8	51.0	66.6	-15.6	35.32	41.40	16.32	42.06	-15.66	
4363.5	52.2	67.0	-14.9	34.90	42.17	16.72	41.59	-17.29	
5611.4	49.9	67.8	-17.8	35.41	38.73	17.33	41.52	-14.54	
16899.2	50.0	68.5	-18.4	31.23	42.19	18.39	41.79	-18.79	
	56.4	68.9	_		47.39				

	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									9:43:55 AM
60.0-									AutoScan 2022.9.30
50.0-							.	أفرادهم	Res BW (kHz) 1000
	J			× aug <mark>X</mark> .	¥	Xaadi Marila Abbahari			Vid BW (kHz) 50000
40.0-	and the second second								VERTICAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 14
			Freau	Jency -	MHz				Sweep Time 270.0012
10.0-	4000	6000	8000	un é þ		00 14	000 10	6000 18000	
requency		Limit dBuV/m	Delta	Haw dBuV	Ant.	Cable dB	dB	All Factors dB	
1Hz 000.0	30.6	44.0			ав 24.40			14.65	
087.2	34.1	50.3 55.7		_	28.07	6.31	43.18	8.79	
882.5	40.5				00.04	0.50	40.00		
001.0					33.24		42.86	1.07	
	42.1	58.0	-15.9	41.01	34.10	9.90	42.95	1.07 -1.04	
535.8	42.1 42.2	58.0 58.8	-15.9 -16.6	41.01 39.91	34.10 34.89	9.90 10.42	42.95 42.99	1.07 -1.04 -2.31	
535.8 799.0	42.1 42.2 43.8	58.0 58.8 60.6	-15.9 -16.6 -16.7	41.01 39.91 39.24	34.10 34.89 36.30	9.90 10.42 11.65	42.95 42.99 43.35	1.07 -1.04 -2.31 -4.60	
535.8 799.0 496.9	42.1 42.2 43.8 45.1	58.0 58.8 60.6 61.4	-15.9 -16.6 -16.7 -16.3	41.01 39.91 39.24 39.01	34.10 34.89 36.30 37.61	9.90 10.42 11.65 11.91	42.95 42.99 43.35 43.46	1.07 -1.04 -2.31 -4.60 -6.05	
535.8 799.0 496.9 935.1	42.1 42.2 43.8 45.1 45.8	58.0 58.8 60.6 61.4 62.9	-15.9 -16.6 -16.7 -16.3 -17.1	41.01 39.91 39.24 39.01 37.48	34.10 34.89 36.30 37.61 38.63	9.90 10.42 11.65 11.91 13.22	42.95 42.99 43.35 43.46 43.52	1.07 -1.04 -2.31 -4.60 -6.05 -8.32	
031.8 535.8 799.0 496.9 935.1 0009.6	42.1 42.2 43.8 45.1 45.8 46.5	58.0 58.8 60.6 61.4 62.9 63.9	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4	41.01 39.91 39.24 39.01 37.48 37.84	34.10 34.89 36.30 37.61 38.63 38.62	9.90 10.42 11.65 11.91 13.22 13.86	42.95 42.99 43.35 43.46 43.52 43.79	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69	
535.8 799.0 496.9 935.1 0009.6	42.1 42.2 43.8 45.1 45.8	58.0 58.8 60.6 61.4 62.9	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4 -18.0	41.01 39.91 39.24 39.01 37.48 37.84 36.90	34.10 34.89 36.30 37.61 38.63 38.62 38.79	9.90 10.42 11.65 11.91 13.22 13.86 14.51	42.95 42.99 43.35 43.46 43.52 43.79 43.66	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69 -9.65	
535.8 799.0 496.9 935.1 0009.6 0752.5	42.1 42.2 43.8 45.1 45.8 46.5	58.0 58.8 60.6 61.4 62.9 63.9	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4 -18.0	41.01 39.91 39.24 39.01 37.48 37.84 36.90	34.10 34.89 36.30 37.61 38.63 38.62 38.79	9.90 10.42 11.65 11.91 13.22 13.86 14.51	42.95 42.99 43.35 43.46 43.52 43.79 43.66	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69	
535.8 799.0 496.9 935.1 0009.6 0752.5 2273.3	42.1 42.2 43.8 45.1 45.8 46.5 46.6	58.0 58.8 60.6 61.4 62.9 63.9 64.5	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4 -17.4 -18.0 -17.7	41.01 39.91 39.24 39.01 37.48 37.84 36.90 35.48	34.10 34.89 36.30 37.61 38.63 38.62 38.79 39.50	9.90 10.42 11.65 11.91 13.22 13.86 14.51 15.91	42.95 42.99 43.35 43.46 43.52 43.79 43.66 42.95	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69 -9.65	
535.8 799.0 496.9 935.1 0009.6 0752.5 2273.3 3172.6	42.1 42.2 43.8 45.1 45.8 46.5 46.6 47.9	58.0 58.8 60.6 61.4 62.9 63.9 64.5 65.7	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4 -18.0 -17.7 -17.2	41.01 39.91 39.24 39.01 37.48 37.84 36.90 35.48 34.23	34.10 34.89 36.30 37.61 38.63 38.62 38.79 39.50 41.08	9.90 10.42 11.65 11.91 13.22 13.86 14.51 15.91 15.97	42.95 42.99 43.35 43.46 43.52 43.79 43.66 42.95 42.15	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69 -9.65 -12.46	
535.8 799.0 496.9 935.1 0009.6 0752.5 2273.3 3172.6 4388.2	42.1 42.2 43.8 45.1 45.8 46.5 46.6 47.9 49.1	58.0 58.8 60.6 61.4 62.9 63.9 64.5 65.7 66.3	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4 -18.0 -17.7 -17.2 -15.8	41.01 39.91 39.24 39.01 37.48 37.84 36.90 35.48 34.23 33.97	34.10 34.89 36.30 37.61 38.63 38.62 38.79 39.50 41.08 42.12	9.90 10.42 11.65 11.91 13.22 13.86 14.51 15.91 15.97 16.75	42.95 42.99 43.35 43.46 43.52 43.66 42.95 42.15 41.59	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69 -9.65 -12.46 -14.90	
535.8 799.0 496.9 935.1	42.1 42.2 43.8 45.1 45.8 46.5 46.6 47.9 49.1 51.3	58.0 58.8 60.6 61.4 62.9 63.9 64.5 65.7 66.3 67.1	-15.9 -16.6 -16.7 -16.3 -17.1 -17.4 -17.4 -17.7 -17.2 -15.8 -17.2	41.01 39.91 39.24 39.01 37.48 37.84 36.90 35.48 34.23 33.97 34.87	34.10 34.89 36.30 37.61 38.63 38.62 38.79 39.50 41.08 42.12 40.22	9.90 10.42 11.65 11.91 13.22 13.86 14.51 15.91 15.97 16.75 16.80	42.95 42.99 43.35 43.46 43.52 43.79 43.66 42.95 42.15 41.59 41.53	1.07 -1.04 -2.31 -4.60 -6.05 -8.32 -8.69 -9.65 -12.46 -14.90 -17.29	

E102: Eth	ernet Swi	itch Posi	tion 5						
90.0- Lev	/el - dBuV/	/m							
80.0-									Fri, Oct 21, 2022
70.0-									9:49:12 AM
60.0-				+			—		AutoScan 2022.9.30
50.0-						ж.	X.x		Res BW (kHz) 1000
40.0-	×		n <mark>X</mark> an Xa	×. ×	uluuu X X . Maasa				Vid BW (kHz) 50000
	Ť.								HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 15
			Frequ	uency -	MHz				Sweep Time 270.0012
-10.0- <mark>,,</mark> 1000	4000	6000	8000	1000	0 120	00 14	000 10	6000 18000	<u>, .</u>
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
ЛНz	dBuV/m	dBuV/m	n dB	dBuV	dB	dB	dB	dB	
003.4	31.0	44.0	-13.0	45.13	24.93	4.41	43.45	14.11	
2451.0	38.7	51.7	-13.1	45.12	29.80	6.81	43.08	6.46	
8682.7	40.4	55.3	-14.9	41.50	33.40	8.35	42.87	1.13	
5084.5	42.8	58.0	-15.2	40.62	35.17	9.99	42.96	-2.20	
6045.9	43.8	59.5	-15.7	39.78	36.38	10.82	43.15	-4.05	
231.7	45.4	61.1	-15.7	38.67	38.49	11.67	43.43	-6.74	
3063.9	46.8	62.0	-15.2	39.42	38.74	12.48	43.80	-7.42	
047.4	47.2	63.0	-15.8	37.87	39.60	13.26	43.52	-9.34	
0009.6	47.4	63.9	-16.5	37.77	39.54	13.86	43.79	-9.61	
1265.1	47.9	64.9	-17.0	36.24	40.13	15.09	43.57	-11.65	
1672.3	47.8	65.2	-17.5	35.24	40.74	15.16	43.38	-12.53	
13551.7	50.2	66.5	-16.3	33.95	42.20	16.27	42.21	-16.27	
4344.8	52.3	67.0	-14.7	34.21	43.00	16.69	41.60	-18.09	
	50.0	67.4	-17.4	33.38	41.27	16.94	41.55	-16.65	
5008.7									
15008.7 16877.9	51.5	68.4	-17.0	31.98	42.95	18.34	41.78	-19.50	

RE102: Eth	ernet Swi	itch Posit	ion 6						
90.0- Lev	el - dBuV/	m							
80.0-									Fri, Oct 21, 2022
70.0-									9:58:54 AM
60.0-									AutoScan 2022.9.30
50.0-						×	ă1	× ""	Res BW (kHz) 1000
40.0-	×	اس 🗶 🐛		× all all	¥., k., X. A .	استار بر این این این ا دور اور این این این			Vid BW (kHz) 50000
									HORIZONTAL
30.0-									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 16
			Frequ	uency -	MHz				Sweep Time 270.0012
-10.0- <mark>,,</mark> 1000	4000	6000	8000	1000	0 120	00 14	000 10	5000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
044.2	32.2	44.3	-12.1	45.83	25.34	4.50	43.44	13.59	
2151.8	35.4	50.6	-15.2	43.24	28.90	6.41	43.16	7.84	
3636.0	40.3	55.1	-14.8	41.73	33.12	8.31	42.87	1.44	
5116.8	43.3	58.1	-14.8	40.98	35.27	10.04	42.96	-2.34	
5580.0	43.1	58.9	-15.8	39.72	35.90	10.46	43.01	-3.35	
200.2	45.0	61.1	-16.1	38.46	38.30	11.66	43.42	-6.54	
7456.1	45.7	61.4	-15.7	38.58	38.71	11.84	43.45	-7.10	
3656.3	46.9	62.7	-15.7	38.47	39.14	12.88	43.54	-8.48	
0438.0	47.0	64.3	-17.2	36.70	39.72	14.33	43.71	-10.34	
11334.0	47.9	65.0	-17.1	36.11	40.20	15.18	43.56	-11.82	
11773.4	48.0	65.3	-17.3	35.19	40.75	15.33	43.28	-12.80	
13606.1	50.5	66.6	-16.0	34.05	42.29	16.35	42.14	-16.50	
14122.1	52.0	66.9	-14.9	34.19	43.04	16.45	41.64	-17.85	
4855.7	49.6	67.3	-17.7	32.44	41.67	17.06	41.56	-17.17	
		00.4	470	20.20	10.00	18.13	41 70	10.00	
16773.4	51.1	68.4	-17.3	32.39	42.20	10.15	41.73	-10.00	

Unclassified Defense Technical Data *** Refer to restrictions on first page ***

E102: Eth	el - dBuV/						1	_	
80.0-	ei - anuV/	m							Fri, Oct 21, 2022
70.0-									10:04:06 AM
60.0-									AutoScan 2022.9.30
							¥		Res BW (kHz) 1000
50.0-	-		*	ر. د د اللارون می	€1	i a subal al da 🏠			Vid BW (kHz) 50000
40.0-					- 17 - A (10- 57)	paka na minaka			VERTICAL
30.0-6									EMCO 3115 (1 Meter)
20.0-									A.H. Systems PAM- 0118P
0.0-									Graph # 17
			Frequ	Jency -	MHz				Sweep Time 270.0012
-10.0- <mark>,,</mark> 1000	4000	6000	8000	1000	0 120	00 14	000 1	6000 18000	
requency	Level	Limit	Delta	Raw	Ant.	Cable	Amp	All Factors	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB	
1013.6	30.7	44.1	-13.3	45.35	24.40	4.44	43.45	14.61	
2121.2	35.0	50.5	-15.5	43.75	28.02	6.37	43.17	8.79	
3917.3	41.0	55.8	-14.8	42.04	33.17	8.61	42.86	1.08	
5135.5	41.8	58.1	-16.3	40.43	34.30	10.07	42.96	-1.41	
869.0	42.3	59.3	-17.0	39.86	34.78	10.77	43.10	-2.44	
6782.8	43.5	60.5	-17.1	38.91	36.27	11.62	43.34	-4.54	
3324.0	46.0	62.3	-16.3	39.11	38.00	12.53	43.65	-6.88	
3450.6	45.6	62.4	-16.9	38.29	38.20	12.67	43.57	-7.29	
	45.6 47.9	62.4 64.3				12.67 14.33			
10472.9		-	-16.4	38.62	38.70		43.70	-9.32	
10472.9 10765.3	47.9	64.3	-16.4 -17.1	38.62 37.81	38.70 38.77	14.33 14.53	43.70 43.65	-9.32	
0472.9 0765.3 1884.8	47.9 47.5	64.3 64.5	-16.4 -17.1 -18.1	38.62 37.81 35.35	38.70 38.77 39.76	14.33 14.53 15.33	43.70 43.65 43.18	-9.32 -9.64	
10472.9 10765.3 11884.8 13669.9	47.9 47.5 47.3	64.3 64.5 65.4	-16.4 -17.1 -18.1 -17.3	38.62 37.81 35.35 33.64	38.70 38.77 39.76 41.40	14.33 14.53 15.33 16.32	43.70 43.65 43.18 42.06	-9.32 -9.64 -11.91	
10472.9 10765.3 11884.8 13669.9 14403.5	47.9 47.5 47.3 49.3	64.3 64.5 65.4 66.6	-16.4 -17.1 -18.1 -17.3 -14.0	38.62 37.81 35.35 33.64 35.81	38.70 38.77 39.76 41.40 42.11	14.33 14.53 15.33 16.32 16.77	43.70 43.65 43.18 42.06 41.59	-9.32 -9.64 -11.91 -15.66	
	47.9 47.5 47.3 49.3 53.1	64.3 64.5 65.4 66.6 67.1	-16.4 -17.1 -18.1 -17.3 -14.0 -18.9	38.62 37.81 35.35 33.64 35.81 32.65	38.70 38.77 39.76 41.40 42.11 40.56	14.33 14.53 15.33 16.32 16.77 16.89	43.70 43.65 43.18 42.06 41.59 41.55	-9.32 -9.64 -11.91 -15.66 -17.29	

Asset Number	Asset Type	Manufacturer	Model	Calibrated	Due		
WC005510	Chamber (EMI, Semi-Anechoic)	National Technical Systems	AR 1	NCR	NCR		
WC005829	Antenna (Active Monopole)	ETS-Lindgren	3301C	01/21/2022	01/21/2023		
WC005618	Antenna (Biconical)	ETS-Lindgren	3109	05/10/2022	05/10/2025		
WC005310	Antenna (Double Ridge Guide)	ETS-Lindgren	3106	04/21/2020	04/21/2023		
WC005289	Network (LISN)	Solar Electronics	8028-50-TS-24- BNC	03/17/2022	03/17/2025		
WC005292	Network (LISN)	Solar Electronics	8028-50-TS-24- BNC	01/28/2022	01/28/2025		
WC005733	Stub (Radiator)	National Technical Systems	N/A	NCR	NCR		
WC058400	Amplifier (Pre/RF/Low Noise)	A. H. Systems	PAM-0118P	05/09/2022	05/09/2023		
WC058401	Antenna (Double Ridge Guide)	EMCO	3115	07/08/2021	07/08/2024		
WC058456	Receiver	Keysight Technologies	N9038A	10/29/2021	01/29/2023		
WC058460	Amplifier (Pre/RF/Low Noise)	Pasternack Enterprises	PE15A1012	05/09/2022	05/09/2023		
WC058501	Cable (Test)	Winchester	E50-E50-2150960	05/09/2022	05/09/2024		
WC058502	Cable (Test)	Winchester	E50-E50-2153120	05/09/2022	05/09/2024		
WC058505	Meter (Milliohm)	Extech Instruments	380560	10/11/2022	10/11/2023		
WC058520	Measurement Tools (Tape Measure)	Starrett	KTX1-26ME12- OC	04/01/2021	04/01/2024		
WC058538	Amplifier (Pre/RF/Low Noise)	Chase EMC	CPA9231A	NCR	NCR		
WC058539	Probe (E-Field/Near Field)	Chase EMC	EFP9152	NCR	NCR		

Table 5.2-2: RE102, Radiated Emissions Test Equipment List

NCR = No Calibration Required; as per NTS Labs, LLC QA policy, the equipment does not require calibration as long as the test signal being generated can be verified with other calibrated equipment prior to or during the test.

Note: LNA Pasternack PE15A1012 P1dB = 17 dBm. LNA AH Systems PAM-0118P P1dB = 6 dBm.

Appendix A: Test Software Description

Test	Manufacturer	Model	Rev	Date Verified
CE102	EMCware	AutoScan	2022.9.30	9/30/2022
RE102	EMCware	AutoScan	2022.9.30	9/30/2022

Table A-1: Test Automation and Data Collection Software Revision

AutoScan[™] EMI Measurement Software

The AutoScan software is a National Instruments LabVIEW[™] compiled package, specifically designed by EMCware for automation of Radiated and Conducted RF Emission measurements.

The AutoScan Emissions Scan Plan window shows the administrator defined test parameters including Start Frequency, Stop Frequency, Resolution Bandwidth, Video Bandwidth, Antenna, Amplifier, Cable, Limit, Reference Level, Attenuation and Sweep Time.

The Scan Plan shown below has been defined in order to perform the radiated emissions test in accordance with MIL-STD-461 RE102. Similar Scan Plans have been defined for CE101, CE102 and RE101.

📴 /	AutoScan Emissions Scan Plan													×				
File	File Edit Operate Tools Window Help												Scan Plan					
													Setup					
	Radiated Emissions																	
	MIL-STD-461 RE102 🗸 0 dB Margin 🗸																	
	tart	Stop	Res BW							Table	Ref.	Attn.		Sweep	Internal	Tower	Special	
	MHz)	(MHz)	(kHz)	(kHz)	Antenna	Amplifier	Cable	Limit		Speed		dB	SiteCal	seconds	PreAmp	Number	RF Input	
	.01 .15	0.15	1	50000 50000	ETS-Lindgren			MIL-STD-461 R MIL-STD-461 R			85 85	0		30.000 30.000	off off		off off	4
		2 30	10	50000	ETS-Lindgren ETS-Lindgren			MIL-STD-461 R			85	-		60.000	off		off	-
2		200	10	50000				MIL-STD-461 R			85	0		60.000	off		off	-
	00	1000	100	50000				MIL-STD-461 R			85	0		120.000	off		off	-
	000	18000	1000	50000				MIL-STD-461 R			85	0		260.000	off		off	-
	,																	
	Edit this Scan Plan			te this 1 Plan	dd a new Ican Plan						View or Add New Factors/Limits							
	Scan Flan				JCal						able			iew ractor	s/ Linits			
									1					<i>c</i>				
Preferences							Scar	Plan Profile						Contin	nue			

The AutoScan Emissions Main Control Panel window shown below was used to execute the test, using the parameters defined in the Scan Plan.

Appendix B: LISN Impedance

Appendix C: Correction Factors

Test Report TR-PR163842-1 EMI, Revision 0

End of Test Report