CE23-0105

GENERAL PRODUCT SPECIFICATION FOR MHD2 BACKPLANE AND DAUGHTERCARD INTERCONNECT SYSTEM

Revision "A"

Specification Revision Status

Revision	Description	Initial	Date
Α	AAO Initial release (Ref TB-2343,	GSP	1-4-2023
	Rev A)		

Aptera, Chameleon, Crossbow, eHSD, GbX, HD Plus, HDM Plus, HDM, HD-Optyx, InfinX, Lynx, NeXLev, Paladin, Ventura, VHDM, VHDM-HSD, and XCede, are trademarks or registered trademarks of Amphenol Corporation. AirMax VS is a registered trademark of FCI. Information contained in this document is summary in nature and subject to change without notice. Appearance of the final, delivered product may vary from the photographs shown herein.

CAmphenol Corporation 2020 - All rights reserved - Printed in the USA

1.0 <u>SCOPE</u>

1.1 Content

- 1.1.1 This specification covers the performance, test, and quality requirements for the XCede HD2 backplane interconnect system. These connectors are two-piece devices that connect two printed circuit boards. Receptacle connectors and pin connectors are through-hole devices with eye-of-the-needle compliant pin contacts. The XCede HD2 connector family consists of modular configurations with custom power and guidance modules.
- 1.1.2 This specification covers the backplane and daughtercard interconnects.

1.2 Qualification

1.2.1 When tests are performed on subject product line, procedures specified in EIA-364-B shall be used per the test sequences outlined in Amphenol TCS Technical Bulletin TB2023. All inspections shall be performed using applicable inspection plan and product drawings.

2.0 <u>REFERENCE DOCUMENTS</u>

- 2.1 The following documents form a part of this specification to the extent specified herein.
 - 2.1.1 Amphenol TCS Documents TB-2023 Amphenol TCS Commercial Connector Qualification Plan TB-2237 XCede HD Family Routing Guidelines TB-2344 XCede HD2 Connector Design Guidelines
- 2.2 Commercial Standards
 - 2.2.1 EIA-364-B Electrical Connector Test Procedure Including Environmental Classifications
 - 2.2.2 GR-1217-CORE-Generic Requirements for Separable Electrical Connectors used in Telecommunications Hardware
 - 2.2.3 IEC-512-Electromechanical components for electronic equipment Basic testing procedures and measuring methods, IEC-60352-6 international standards, solderless connections, press fit connections, general requirements, test method and practical guidance.

3.0 <u>MATERIAL FINISHES</u>

3.1 Contacts

- 3.1.1 Backplane signal blades are 0.30 mm thick high performance copperalloy.
- 3.1.2 Backplane ground blades are 0.30 mm thick high performance copper alloy.
- 3.1.3 Backplane signal and ground blades are lubricated.
- 3.1.4 Receptacle signal contacts are 0.203 mm thick high performance copper alloy.
- 3.1.5 Daughter shields are 0.152 mm thick high performance copper alloy.
- 3.1.6 Power Blades are 0.30 mm thick high performance copper alloy.
- 3.1.7 Power Receptacle contacts are 0.30 mm thick high performance copper alloy.

Notes:

All contacts are plated and meet lead free requirements, refer to EGS205.

3.2 Sub Components

Component	Material	Specification
Insulator	Glass reinforced polyester (LCP)	Color Grey or Black
Stiffener	Stainless steel, Type 301	N/A
Backplane Guide Pins and Keys	Stainless steel	QQ-S-764, CL 303 or 303 SE
		Condition A
Daughtercard Key Bushing	Sintered stainless steel	Material Power Industries
		Federation Standard 35, SS 316NI-25

4.0 <u>SKEW DATA</u>

Wafer A		Wafer B			
Contact row	Delay, (ps)	Skew, (ps)	Contact row	Delay, (ps)	Skew, (ps)
GND1*	/	/	GND1	/	/
А	104.4	0.7	А	93.6	0.1
В	105.1	0.7	В	93.7	0.1
GND2	/	/	GND2	/	/
С	121.2	1.1	С	115.3	0.9
D	122.3	1.1	D	116.2	0.9
GND3	/	/	GND3	/	/
Е	141.4	0.5	Е	135.0	0.1
F	141.9	0.5	F	135.1	0.1
GND4	/	/	GND4	/	/

4.1 HD2 3Pair Daughtercard

* XHD2 3 pair DC and BMA connectors are available with and without wafer A Ground 1 lead.

Wafer A			Wafer B		
Contact row	Delay, (ps)	Skew, (ps)	Contact row	Delay, (ps)	Skew, (ps)
GND1*	/	/	GND1	/	/
А	105.4	0.2	А	93.7	0.2
В	105.6	0.2	В	93.5	0.2
GND2	/	/	GND2	/	/

4.2 HD2 4Pair Daughtercard

С	124.6	0.1	С	116.6	0.2
D	124.5	0.1	D	116.4	0.2
GND3	/	/	GND3	/	/
Е	144.4	0.1	Е	137.6	0.1
F	144.3	0.1	F	137.5	0.1
GND4	/	/	GND4	/	/
G	163.5	0.1	G	160.7	0.2
Н	163.6	0.1	Н	160.5	0.2
GND5	/	/	GND5	/	/

* XHD2 4 pair DC and BMA connectors are available with and without wafer A Ground 1 lead.

Wafer A		Wafer B			
Contact row	Delay, (ps)	Skew, (ps)	Contact row	Delay, (ps)	Skew, (ps)
GND1*	/		GND1	/	/
А	138.3	0.7	А	124.7	0.8
В	137.6	0.7	В	123.9	0.8
GND2	/	/	GND2	/	/
С	158.2	1.1	C	149.2	1.6
D	157.1	1.1	D	147.6	1.0
GND3	/	/	GND3	/	/
Е	178.1	1 1	Е	171.3	2.2
F	177.0	1.1	F	169.0	2.3
GND4	/	/	GND4	/	/
G	196.2	0.2	G	195.0	1.0
Н	195.9	0.3	Н	193.1	1.9
GND5	/	/	GND5	/	/
J	220.0	0.8	J	219.1	1.4
K	219.2	0.8	K	217.7	1.4
GND6	/	/	GND6	/	/
L	241.3	0.2	L	237.9	0.4
М	241.1	0.2	М	238.3	0.4
GND7	/	/	GND7	/	/

4.3 HD2 6 Pair Daughtercard

* XHD2 6 pair DC and BMA connectors are available with and without wafer A Ground 1 lead.

5.0 <u>ELECTRICAL RATINGS</u>

5.1 Resistance

Description	Value
Mating Interface Contact Resistance Change	10mΩ Maximum
Compliant Pin to Plated Through Hole Resistance	1 mΩ Maximum
Insulation Resistance	1000 Mega Ω

5.2 Voltage

Description	Agency	Working	DWV
Signal	UL 48 VAC (RMS)	250 VAC (RMS)	500 VAC (RMS)
Power	UL 48 VAC (RMS)	250 VAC (RMS)	500 VAC (RMS)

6.0 <u>CURRENT AND TEMPERATURE RATINGS</u>

Description	Value
Signal Contact	1.5 Amp per contact ^{$(1)(2)$}
Ground Contact	1.5 Amp per contact ^{$(1)(2)$}
Power Contact	10 Amps per blade ^{(1) (2)}
Maximum operating temperature rating	105°C
Minimum operating temperature rating	-40°C

Note:

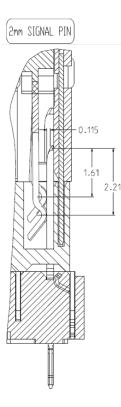
1, Current has been de-rated per EIA-364-TP70

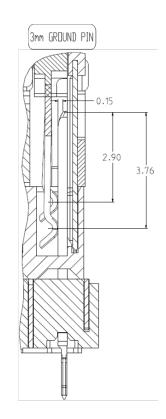
2,Product was tested in worst-case conditions where the PCB did not have any power planes. For other test conditions please contact ATCS Application Engineering.

7.0 <u>MECHANICAL RATINGS</u>

7.1 Mechanical Performance

	Value, per contact	
Description	Grams	Newtons
Signal and Shield Contact Normal Force	40 End Of Life (EOL)	0.40
Signal and Shield Contact Engagement Force ⁽³⁾	60 max	0.60 max
Signal and Shield Contact Separation Force ⁽³⁾⁽⁴⁾	15 min	0.15 min
Power Contact Normal Force	70 End Of Life (EOL)	0.70
Power Contact Engagement Force ⁽³⁾	85 max	0.85 max
Power Contact Separation Force ⁽³⁾⁽⁴⁾	40 min	0.40 min
Signal, Shield, and Power Contact Durability	Rated for 250 Mating Cycles	
Connector Mating Angle	+/- 2 degrees X and Y axis	
Contact Mechanical Wipe Values	Signal 2.5/2.0 Shield 3.0/2.0	

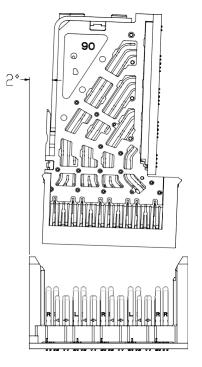

	Value, per wafer	
Description	Lbs	Newtons
Front housing retention force	4 min	17.6 min

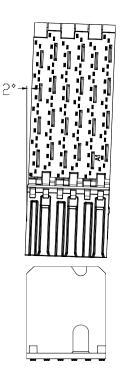

Note:

- 3. These values are maximum and minimum expected forces, averaged over the number of mating points (contacts) in a connector. This data is to be used for purposes of system mechanical sizing.
- 4. All engagement/separation force values assume the connector is pressed on a sufficiently rigid PCB without excessive flexing during mating.


- 7.2 Backplane, Daughtercard and Mezzanine Module Assembly True Position Requirements
 - 7.2.1 The true position of the compliant pin interface is defined prior to connector pressing onto board.
- True position Type Detailed view specification 20,90 0.66 GROUND 0.55 SIGNAL ф Ø0.30 ΒP XCede HD2 Blade TP:0.30 12.0 BMA Compliant pin:0.24 0-4.03 Φ Ø0.24 X_BP Y_BP (1.10) TAIL LENGTH X_BP ◄ Y_DC 5X1.80 =(9.00) 1.80 R 0.127 XCede HD2 Compliant pin:0.24 Daughtercard 0.42 FROM COMPLIANT Y_BP
- 7.2.2 Compliant pin tips to be measured per best fit floating grid.

7.3 Contact wipe length





7.4 Gather ability

7.5 Mating angle

8.0 <u>COMPLIANT PIN INTERFACE</u>

Description	Value per Pin, lbs
0.0157" Drill (XCede HD2 Femto D	C/BMA Pin)
Signal and Shield Compliant Pin Insertion, 0.0157 drill	5 Maximum
Signal and Shield Compliant Pin Retention, 0.0157 drill	0.50 Minimum ^{(5) (6)}
0.033" Drill (XCede HD PLUS Power I	DC/BMA Pin) *
Power Compliant Pin Insertion	15 Maximum
Power Compliant Pin Retention	2.0 Minimum ⁽⁵⁾

* XHD2 power share with XCede HD PLUS Power module.

- 8.1 Radial hole deformation not to exceed 70µm measured from drilled hole
- **8.2** Axial hole deformation not to exceed 50µm per IEC 60352-5 measured in the vertical plane

Notes:

5. Refer to technical bulletin TB-2237XCede HD Family Routing Guidelines, for drilled and finished hole requirements.

6. The average compliant pin retention shall not be less than 0.5lbf with no more than 10% of retention values between 0.5lbf and 0.4lbf, and no retention values below 0.4lbf.

9.0 **QUALIFICATION TESTING**

- 9.1 Sample Selection: Refer to Section 13 for minimum recommended connector sample size
- **9.2** Test Sequence: Qualification testing shall be performed per the sequences listed in Section 13 of this document.
- **9.3** The qualification for the XCede HD2 product line was performed with the 6 Pair interconnect and by similarity all other derivatives of the product line are considered qualified.

10.0 **REQUALIFICATION TESTING**

10.1 If changes affecting form, fit or function are made to the product or to the manufacturing process, Product Engineering and Mechanical Integrity Engineering shall coordinate requalification testing of all or part of the original testing sequence as required.

11.0 <u>ACCEPTANCE</u>

11.1 Acceptance is based on verification that the product meets the requirements of Section 12. Failures attributed to equipment, test set-up, or operator deficiencies shall not disqualify the product. If product failure occurs, corrective action shall be taken and samples resubmitted for qualification. Verification of corrective action is required before re-submittal.

12.0 SPECIFICATION SUMMARY

Parameters	Specification	XCede HD2 Value	Reference Document
Plating Integrity	Acceptable Porosity	3 Pores per cm ²	EIA-364-TP53 Exposed to nitric vapors
Contact Metallization	30µin Gold min over 50- 150µin Ni	30µin Gold min over 50- 150µin Ni or 10µin Gold min over 20- 40µin NiW alloy or 10µin Gold min over 20 Pd- Ni over 50-150µin Ni	GR-1217-CORE Per paragraph 5.2.5 EIA-364-TP09
Durability	200 Cycles	250 Cycles	GR-1217-CORE Per paragraph 5.2.5 EIA-364-TP09
Base	Surface finish is 16 RMS or otherwise specified	16 RMS on mating surfaces	GR-1217-CORE
Lubrication	Must be present on all backplane blades/shields	Must be present on all backplane blades/RAM blades/shields	GR-1217-CORE R5-67
Flammability Rating	94V-0	Must Pass Requirement	UL94

12.1 Material

12.2 Mechanical

Parameters	Specification	XCede HD2 Value	Reference Document
Contact Normal Force	40 Grams End of Life	40 Grams End of Life	GR-1217-CORE
	(EOL)	(EOL)	EIA-364-TP04
Engagement Force	NA	SEE SECTION 7.1	EIA-364-TP37A
Contact Strength	Apply 0.25 lbs. Axial	Apply 0.25 lbs. Axial	GB-1217-CORE
	Force per contact	Force per contact	Per paragraph 6.1.7
Contact Wipe Distance	0.51 mm (0.020") min.	SEE SECTION 7.4	GR-1217-CORE
_			R5-28
Polarization Force	100 N (22.5 lbs)	Mate Samples 180° out of	GR-1217-CORE
		Phase	Per paragraph 5.1.9
Compliant Pin Retention	N/A	SEE SECTION 8.0	GR-1217-CORE
			EIA-364-TP29
Contact Geometry	Minimum one curved	Minimum one curved	N/A
	surface in mating area	surface in mating area	
Hertzian Stress	N/A	Greater than 150 Kpsi	N/A

12.3 Electrical

Parameters	Specification	XCede HD2 Value	Reference Document
Contact Resistance	Less than $10m\Omega$ change	Less than 10milli-Ohms change	GR-1217-CORE
Stability (LLCR)	from initial reading	from initial reading	Per paragraph 6.2.1 EIA-364-TP23
Compliant Pin to PTH	$1m\Omega$ maximum	1milli-Ohms maximum GR-1217-CORE	
Resistance			EIA-364-TP23
	Test current 100mA and 20mV open circuit		
Signal Continuity	Less than 10 nanosecond interrupt	Less than 10 nanosecond interrupt	GR-1217-CORE
Current Rating	Less than 30°C	SEE SECTION 6.0	GR-1217-CORE
	Temperature Rise		EIA-364-TP70
Insulation Resistance	1,000 Mega Ohms	1,000 Mega Ohms	GR-1217-CORE
Dielectric Withstanding	1,000 VAC Peak	500 VAC Peak	GR-1217-CORE
		De-rated value	EIA-364-TP20

12.4 Environmental

Parameters	Specification	XCede HD2 Value	Reference Document
Temperature Life	No Change in LLCR greater than 10mΩ	10milli-Ohms Maximum change	GR-1217-CORE EIA-364-TP17 Test condition 4 Per paragraph 6.3.2
Thermal Shock	No Change in LLCR greater than 10mΩ 5 cycles for -55°C to 85°C	Same as above	GR-1217-CORE Per paragraph 6.3.3 EIA-364-TP32
Humidity Cycling	No Change in LLCR greater than 10mΩ Relative Humidity 90 to 95% For 500 hrs	Same as above	GR-1217-CORE EIA-364-TP31 Procedure II
Dust	No Change in LLCR greater than 10mΩ	Same as above	GR-1217-CORE Per paragraph 9.1.1.1 EIA-364-TP91
Vibration	No Change in LLCR greater than 10mΩ Random Vibration 9.26g RMS	Same as above	GR-1217-CORE EIA-364-TP28E Condition V-C-9.26g rms Random. Per paragraph 9.1.2.1
Mechanical Shock	No Change in LLCR greater than 10mΩ 50g Half sine excitation.	Same as above	GR-1217-CORE EIA-364-TP27 Test condition A
Mixed Flowing Gas	No Change in LLCR greater than 10mΩ 300 hrs at 105°C thermal conditioning also included	Same as above	GR-1217-CORE Per paragraph 9.1.3 EIA-364-TP65 Class IIA

13.0 TELCORDIA QUALIFICATION TEST GROUP SUMMARY

13.1 Test Groups

- Group 1: Vibration and mechanical shock with dust and durability
- Group 2: Thermal shock and humidity with dust and durability
- Group 3: Temperature life, 500 hrs @ 105°C
- Group 4: Mixed flowing gas, 4 gases with durability-thermal conditioning included prior to test Group 5: Porosity and plating thickness
- Note: Compliant pins are tested separately.

			1	
GROUP1	GROUP2	GROUP3	GROUP4	GROUP5
Visual Exam	Visual Exam	Visual Exam	Visual Exam	Mechanical
\downarrow	\downarrow	\downarrow	\downarrow	Exam
LLCR	LLCR	LLCR	LLCR	\downarrow
\downarrow	\downarrow	\downarrow	\downarrow	Plating
Mate/Unmate	Mate/Unmate	Mate/Unmate	Durability 100x	Thickness
Force	Force	Force	\downarrow	\downarrow
↓ ↓	↓ ↓	↓ ► 1	LLCR	Plating
LLCR	LLCR	Durability 50x	↓ 	Porosity
\downarrow	↓	↓ LL CD	Pre-Condition	
Durability	Insulation	LLCR	300 hrs at	
100x	Resistance (IR)	\downarrow	105 C	
	\downarrow	Temperature		
LLCR	Dielectric	Life	Mate/Unmate	
↓	Withstanding	↓ LLCD	Force	
Temperature	Voltage	LLCR	↓ LLCD	
Precondition	(DWV)		LLCR	
(72 hours at)	V Durshility 250m	Mate/Unmate	↓ Mino d Elansia a	
105°) ↓	Durability 250x	Force ↓	Mixed Flowing	
↓ LLCR	LLCR	LLCR	Gas (Unmated)	
LLCK ↓		LLUK	◆ 5th day LLCR	
v Dust	↓ Dust		10th day LLCR	
↓ ↓	Dusi ↓			
LLCR	LLCR		Mixed Flowing	
↓	⊥LCR		Gas (Mate)	
Vibration 3	Thermal Shock		us (mate)	
Axis	\downarrow		5th day LLCR	
\downarrow	IR		10th day LLCR	_
LLCR	\downarrow		↓ ↓	
X,Y,Z axis -	- DWV		Disturbance	
\downarrow	\downarrow		\downarrow	
Mechanical	LLCR		LLCR	
Shock			\downarrow	
3 Axis	Humidity		Durability 100x	
\downarrow	\downarrow		\downarrow	
LLCR	LLCR		LLCR	
X,Y,Z axis	\downarrow			
\downarrow	IR			
Durability	\downarrow			
100x	DWV			
\downarrow	\downarrow			
Mate/Unmate	Mate/Unmate			
Force	Force			
\downarrow	\downarrow			
LLCR	LLCR			

FIGURE 1, Telcordia Test Plan GR-1217-CORE, CENTRAL OFFICE

13.2 Each test group will have a minimum 200 LLCR measurements.

13.3 Definitions

- 13.3.1 LLCR- Low Level ContactResistance
- 13.3.2 CPIR- Compliant Pin Interface Resistance
- 13.3.3 DWV- Dielectric Withstanding Voltage
- 13.3.4 IR- Insulation Resistance

14.0 <u>RESISTANCE MEASUREMENT SET-UP</u>

FIGURE 2. Typical contact resistance set-up. Kelvin 4 wire traces from connector hole to monitoring hole.

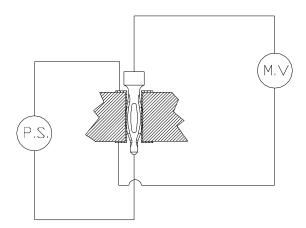


FIGURE 3. Typical compliant pin interface resistance (CPIR) set-up.